
Richard Seroter

A Field Guide for Breathing New Life
into Your Software

Modernizing
.NET Applications

Compliments of

http://pivotal.io/platform

Give your .NET
apps the home
they deserve.
• Push .NET Framework or .NET Core

apps to the premier multi-cloud platform.

• Get built-in log aggregation, health
monitoring, crash recovery, autoscaling,
and more.

• Run underlying Windows Server
and Linux machines at scale, with
zero-downtime updates.

 Learn more at pivotal.io/platform

https://pivotal.io/platform?utm_source=oreilly-ebook&utm_medium=ebook-ad&utm_campaign=seroter-oreilly-ebook-2018

Richard Seroter

Modernizing .NET
Applications

A Field Guide for Breathing New Life
Into Your Software

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04357-7

[LSI]

Modernizing .NET Applications
by Richard Seroter

Copyright © 2019 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com/safari). For more
information, contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Brian Foster
Production Editor: Nan Barber
Copyeditor: Rachel Monaghan
Proofreader: Octal Publishing, LLC

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2018: First Edition

Revision History for the First Edition
2018-11-07: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modernizing .NET
Applications, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and do not represent the
publisher’s views. While the publisher and the author have used good faith efforts to
ensure that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions, includ‐
ing without limitation responsibility for damages resulting from the use of or reli‐
ance on this work. Use of the information and instructions contained in this work is
at your own risk. If any code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual property rights of oth‐
ers, it is your responsibility to ensure that your use thereof complies with such licen‐
ses and/or rights.

http://oreilly.com/safari
mailto:corporate@oreilly.com

Table of Contents

Preface: The .NET Renaissance. vii

1. Why App Modernization Matters. 1
What Is Modernization? 3
Why Modernize? 4
What We Cover in This Book 5

2. What You Have Running Right Now. 7
You Have Many Different .NET Project Types 7
You Have Lots of Windows-Specific Hooks in Your .NET

Software 9
You Have Stale Environments That Aren’t Regularly

Updated 10
You Have Monolithic Architectures and Complex

Deployments 11
You Have Apps Without Deployment Pipelines 12
You Have Apps That Aren’t Ready for Higher-Order Cloud

Runtimes 14
Summary 14

3. The .NET Software You’re Asked to Create. 15
Behind-the-Firewall Enterprise Apps 15
Real-Time Processing Systems 16
Public-Facing Web Applications 17
Mobile-Friendly Solutions 17
APIs for Internal Apps and Partners 18
Summary 19

iii

4. What Does Cloud Native Look Like?. 21
Defining Cloud Native 21
Why Cloud-Native Matters 22
Characteristics of Cloud-Native Apps 23
Thinking Beyond “Apps” for Cloud-Native Software 27
Measuring Your Progress Toward Becoming Cloud Native 28
Summary 29

5. Choosing Between .NET Framework and .NET Core. 31
A Bit of History Regarding the .NET Framework 31
The Introduction of .NET Core 33
Deciding Which to Use When Modernizing .NET Apps 34
Summary 34

6. The New .NET Antipatterns. 37
.NET Application Architecture Antipatterns 37
Configuration and Instrumentation Antipatterns 41
Application Dependencies and Deployment Anti-Patterns 43
Summary 44

7. New Components for Your Modernized .NET Applications. 45
Open Source Data and Messaging Software 45
Cloud-Based Data and Messaging Services 47
Modern .NET Packages 48
Continuous Integration and Continuous Delivery Tools 52
Summary 52

8. Where to Run Your Modern .NET Applications. 53
Choose Your Infrastructure Location 53
Choose Your Infrastructure Abstraction 55
Summary 60

9. Applying Proven Modernization Recipes. 61
Use Event Storming to Decompose Your Monolith 61
Externalize Your Configuration 63
Introduce a Remote Session Store 67
Move to Token-Based Security Schemes 70
Put .NET Core Apps on Pipelines 81
Summary 86

iv | Table of Contents

10. Your Call to Action. 87
Step 1: Assess Your Portfolio 87
Step 2: Decide on a Modernization Approach 88
Step 3: Modernize Your Initial Set of Apps 90
Step 4: Record Your Patterns and Spread the News 91
A Final Note 91

Table of Contents | v

Preface: The .NET Renaissance

.NET is far from dead. Although JavaScript, Go, and Swift have
gathered plenty of developer attention, .NET remains a dominant
framework. The 2018 StackOverflow Developer Survey polled more
than 100,000 developers. In the results, developers said C# was the
eighth “most loved” language, and .NET Core was the fifth “most
loved” framework. Analyst firm RedMonk looks at GitHub projects
and StackOverflow discussion to create its language rankings, and
C# has been the fifth most popular language for years now. Compa‐
nies around the world have major existing investments in .NET, and
its popularity remains high.

But it hasn’t been entirely smooth sailing. With .NET’s coupling to
Windows environments, .NET apps haven’t had access to the bleed‐
ing edge of server automation or application deployment. Configu‐
ration management tools have only recently supported Windows in
earnest. Public clouds are now making a legitimate effort to
woo .NET developers, but that wasn’t the case even five years ago.
And many of the most exciting microservices patterns have been
tougher to implement with the available .NET tools.

This situation has left you with some tough choices. Should you
abandon .NET and do your new development in a more open
source, Linux-centric language? Should you invest the bare mini‐
mum to keep existing .NET apps online but freeze new develop‐
ment? A few years ago, that was a fair concern. However, with the
introduction of .NET Core, the availability of new libraries, and
some fresh architecture patterns, you have a viable path forward. I’m
excited about it. You can confidently build new applications
with .NET, while reengaging plans to upgrade the .NET apps you

vii

http://bit.ly/2JgZqtY
http://bit.ly/2Pl1qGZ

have. Don’t believe me? Let me prove it to you over the course of
this book.

Acknowledgments
There are a few folks I’d like to thank for their support on this little
endeavor. First, the O’Reilly team has been exceptional. This book is
so much better because of their close involvement.

My colleagues at Pivotal are truly best in class and motivate me to
do my best work. Our field-facing folks influenced my thinking with
all their practical insight into what customers want to accomplish.
Our engineering organization includes so many talented people who
want to make Windows and .NET great for developers. And I work
with the best marketing team on the planet. Special thanks to my
terrific boss, Ian Andrews, for always giving me the latitude to take
on these crazy projects.

Last but not least, I’m grateful for my supportive family. My wife,
Trish, children Noah, Charlotte, and Elliott, and two pups inspire
me more than they’ll ever know.

viii | Preface: The .NET Renaissance

CHAPTER 1

Why App Modernization Matters

The top two most-watched cable television networks are Fox News
and MSNBC, respectively. In third place is the popular children-
oriented network, Nickelodeon. What’s the fourth most-watched
cable network? Maybe ESPN for sports fans? How about one of
those classic television or movie channels? Nope. It’s Home and
Garden TV (HGTV), a quirky how-to channel focused on home
improvement. I’d like to believe its popularity comes from the fact
that we humans inherently like to fix things. We often prefer to
upgrade something instead of starting over. I think most developers
feel the same way about our software. There’s value in improving
what we have versus walking away.

Okay, but how much does your approach to software really resemble
those shows on HGTV? I see at least three relevant parallels.

Stating your goals out loud
One thing I like about these home-improvement shows is that
the hosts don’t hide their intentions. On Fixer Upper, the point
is to help couples buy an affordable house and then make the
repairs needed for them to truly enjoy it. In Love It or List It, one
host wants the family to leave their old place behind, whereas
the other does the necessary upgrades to try to convince the
family to stay put. The host of Rehab Addict believes that old
homes have a beauty that is brought out with (sometimes
major) repairs, and she wants to prove it.

When assessing your software portfolio, it’s so important to
know what you’re after. Say it out loud. Are you purely trying to

1

http://bit.ly/2SeogPc

save on infrastructure costs? If so, you’re likely to choose a dif‐
ferent path than if you’re looking to make it easier to add func‐
tionality. Got issues with performance and scale? I’d bet you’ll
make architecture choices that wouldn’t be necessary if the
application were handling the load just fine.

Recognizing that the extent of intrusiveness often correlates with value
A fresh coat of paint is a good thing. But no one’s delusional
enough to think that painting the interior of a house will triple
its value. It’s nice, but superficial. Remodeling a kitchen? That’s
a different story. To achieve exponential leaps in value, you
often have to make intrusive changes.

The same goes for your apps. Cleaning up the user interface is a
terrific thing to do, but rarely does that solve issues of scale,
security, or stability. Are you looking to add test coverage to
your code, or swap out an enterprise service bus for a light‐
weight broker? This means getting elbow-deep into the code,
but it tends to pay higher dividends.

This goes back to your goal. If cost savings are what you’re after,
you don’t need to generate significant value. Containerize it,
throw it in a cloud somewhere, and move on. Now, if you’re try‐
ing to continuously deliver your app as a way to establish deeper
customer loyalty, you’ll pursue more extensive avenues that give
you that higher order of value. This book focuses on scenarios
for which you’re after significant value from your existing .NET
apps.

Respecting the choices made before you got there, but don’t be hand‐
cuffed by them

I find it amusing when an HGTV host goes into an older house
and chuckles at outdated carpet or a kitchen that looks like a
1950s sitcom set. But I’d be willing to bet that those decisions
made total sense at the time. In that era, with that builder or
homeowner, that kitchen was perfect. The new homeowner can
recognize that reality, but doesn’t hesitate to make the changes
needed to make the home more suitable today.

If you’re like me, you often look at your old code and sadly
shake your head. What was I thinking? However, that code prob‐
ably represented the best of our skills, our knowledge, and our
project demands at the time. Don’t apologize for that. Many
folks dislike the term legacy software because it’s used as an

2 | Chapter 1: Why App Modernization Matters

insult. But that legacy software is running your company.
Respect the fact that whoever built the first (or second, or
third!) version of an app created something that must have been
valuable enough to warrant yet another look.

What Is Modernization?
As I said earlier, you need to respect what came before. But just as
you would want to update a house to current standards and styles,
this book is about modernizing your .NET applications. What do I
mean by “modernizing”? Your options with existing applications fall
onto a spectrum, as shown in Figure 1-1.

Figure 1-1. The spectrum of options for your existing apps

First, you might choose to stay put. That means keeping the applica‐
tion where it currently resides and avoiding changes. Some software
might be at the end of its life, so any effort isn’t worth it. Or, it’s of
low business value and your time and attention belong elsewhere.

When I say replatforming I mean taking an app, as is, and running it
elsewhere. Maybe you’re taking your app from a virtual machine to a
container. Or from a commercial web server to an open source one.
There might be some light code changes, but only the basics
required to get the software to run on the next platform.

The next part of the spectrum is refactoring. Here, you make light or
heavy changes to the code as part of an effort to improve it. You
might also swap out major components like database engines or
message brokers. Here, you also reconsider previous architectural
choices. All of this takes time, but it yields more lasting benefits by

What Is Modernization? | 3

retiring technical debt or increasing the functional capability of the
software.

Next, you could choose to rebuild the .NET app. The work required
to refactor it might be more than it would take to start fresh. There’s
no shame in committing to a rebuild, but for some teams, it’s the
first option they consider. It can be difficult to estimate the true level
of effort to rebuild an application, and it can be challenging to incre‐
mentally deliver value if you’re replacing a heavily used system.

Besides the previous options, you can also choose to retire or replace
your .NET application. I’d bet that you have some software that’s
dutifully maintained but actually no longer relevant. It’s important
to constantly retire applications that aren’t needed anymore. And
sometimes, you replace a homegrown, custom-built system with a
Software as a Service (SaaS) or commercial one.

For the purposes of this book, when I say “modernization,” I’m con‐
sidering the far end of replatforming, through the refactoring and
rebuild stages. That’s where core modernization happens.

Why Modernize?
Why go through the effort of changing the apps already in produc‐
tion? If it ain’t broke, don’t fix it, right? I never liked that saying.
Sometimes, the current state seems functional on the surface but is
hiding some underlying weakness.

I count at least five reasons that modernization is worth the effort:

Consolidating your environments
Server sprawl is a real thing. When I was a solution architect
and needed hardware, I’d ask for the biggest box I could because
I knew getting it resized later was painful. The result? That
server sat at 2% utilization. What a waste. I’m sure your (on-
premises or cloud) infrastructure is full of underutilized servers,
forgotten testing environments, and insecure jump boxes for
which everyone knows the password. By modernizing your
software, you make it more amenable to high-density, on-
demand hosts. That’s a cost savings, and it makes you more
secure.

4 | Chapter 1: Why App Modernization Matters

Adding new functionality
I’m not sure about where you work, but I’d think that software
exists to, you know…do stuff. And nowadays, that often means
new features for users, the ability to handle mobile clients,
dynamic integration with other systems or companies, resil‐
ience in the face of bursty traffic, and a secure-by-default archi‐
tecture. A major reason that organizations invest in
modernization is to unlock new value from existing assets.

Upgrading and patching your dependencies
Sun Microsystem’s Scott McNealy once quipped that “technol‐
ogy has the shelf life of a banana.” I’d be willing to bet that some
piece of your software stack requires an update every two
weeks. Depending on your architecture and level of automation,
it can be impossible to keep up. One goal of modernization is to
make it easier to update your components.

Automating more pieces of delivery
The demands put on you by your company and customers are
nearly unsustainable without a commitment to automation. Are
you still manually testing the code, running security scans, or
double-clicking an MSI to deploy software? That has to change,
and modernization affords you the opportunity to inject strate‐
gic points of automation into your system.

Reigniting your passion for technology
We’re in the golden age of technology. I believe that. We’ve
never been able to use so little effort to create more impactful
experiences with technology. So if you’re not enjoying what
you’re doing right now, one reason could be the slog of dealing
with hard-to-maintain systems that everyone depends on. Mod‐
ernizing your software so that it works for you, not the other
way around, is an important reason to make this investment.

What We Cover in This Book
This book is about assessing your existing collection of .NET appli‐
cations and improving them. We look at improving how you design,
build, and run these apps.

In Chapter 2, we’ll explore what the current state looks like. It’s
important to take an inventory of the current state so that we know

What We Cover in This Book | 5

what we’re working with. Only then can we zero in on the right tac‐
tics to employ.

Chapter 3 digs into the modern demands of a .NET software devel‐
oper. What are you asked to create? When we understand what’s
demanded of us, we can put our focus on the work that matters.

Chapter 4 explains what “cloud-native” means and why it’s an objec‐
tive for many people embarking on modernization efforts. The
cloud-native paradigm offers some crisp criteria that can guide your
work.

The introduction of .NET Core represents a watershed moment
for .NET developers. But is it suitable for every app? In Chapter 5,
we look at where .NET Core came from and how to choose between
it and the .NET Framework.

With new paradigms come new patterns and antipatterns. Many of
the things that were acceptable on Windows or classic .NET apps are
now holding you back. In Chapter 6, we look at what you need to
unlearn.

Part of modernization might involve introducing or exchanging
some core pieces. Chapter 7 outlines the components you should
strongly consider if you’re after agility, scalability, and velocity.

You’ve never had more places to run .NET software. Chapter 8 cata‐
logs all the major options and how you might decide what types
of .NET apps run where.

Modernization is about much more than what’s in the code. In
Chapter 9, we dig into proven modernization strategies that help
you decompose monoliths, upgrade your architecture, and much
more.

I hope you’ll be energized after finishing this book. We close in
Chapter 10 with some actionable steps for getting control over
your .NET portfolio and extracting new value from your existing
assets.

6 | Chapter 1: Why App Modernization Matters

CHAPTER 2

What You Have Running
Right Now

In Chapter 1, we established that there are business benefits, techni‐
cal benefits, and human benefits to running adaptable, maintainable
software. Sounds like a place you want to be! But if your company is
like most, you’re not starting with a blank slate. No, you have years’
worth (decades’ worth, even) of .NET software that runs your com‐
pany. That’s your starting point. Before we shift to the new-and-
exciting aspects of modern .NET, it’s important to catalog our
current state. Why? It’s difficult to clearly see the value of new para‐
digms unless you recognize the pain of where you are today. And to
get a sense for what “better” looks like, you must have a baseline.

In this chapter, we look at a few areas that reflect your (likely) cur‐
rent state. For each, I outline the implications and your motivation
to change.

You Have Many Different .NET Project Types
There isn’t a one-size-fits-all approach to .NET projects. From the
beginning, Microsoft offered different types of projects for each sce‐
nario. Need a component? Create a class library. Building a website
or web service? Choose from a few options. Building a smart client
for the desktop or a background service for the server? Yup, we have
those handled, too.

7

Anyone using .NET for a decade or longer has these types of appli‐
cations running somewhere:

Windows Forms application
Run thick-client applications on the desktop. These are user-
driven applications built with rich UI controls provided out of
the box, bought from a third party, or custom built. These appli‐
cations were everywhere in the enterprise until high-speed
internet became ubiquitous.

Windows Services
Define long-running background jobs for Windows environ‐
ments. Many server-side software products installed their com‐
ponents as Windows Services. It was also easy for developers to
build these to perform tasks like monitoring file shares for new
documents.

Windows Presentation Foundation (WPF) applications
The successor to Windows Forms. These apps offered a UI
framework driven by declarative models written with Extensible
Application Markup Language (XAML) and .NET code.

Console applications
Terminal applications that are often invoked via command lines
(with parameters) or other simple tasks that require only text
input and output.

ASP.NET Web Forms application/site
Quickly develop web applications using the original .NET web
framework. Based on HTML, server-side controls, and server
code, these applications replicated the Windows Forms devel‐
oper experience. Even though building SOAP web services was
easy with this model, it was also quite basic and limiting.

Windows Communication Foundation (WCF) services
WCF is a hyper-extensible framework for building SOAP and
RESTful web services. WCF implemented a variety of WS*
standards in an attempt to be a cross-platform framework.
Although powerful, WCF led teams down a configuration-
heavy, complex path.

ASP.NET MVC applications
Build web applications and APIs based on the popular model-
view-controller design pattern. This open source framework

8 | Chapter 2: What You Have Running Right Now

remains a popular choice and has likely become the default
option within your organization.

I didn’t even include unsupported Windows Workflow or Silverlight
applications in this list, but I’d be willing to bet that you have a
handful of those applications stashed somewhere!

What That Means
It’s good to have choices. But as a result of evolving choices in
the .NET ecosystem, you now have a mishmash of programming
models and skill sets throughout your organization. Even though all
of the aforementioned are technically supported by Microsoft, you’ll
struggle to find Windows Forms experience, whereas ASP.NET
MVC skills are plentiful in the market.

Why You Want to Change
You could lift and shift some of your classic .NET application types
to a new Infrastrucutre as a Service (IaaS) or container environment.
However, that doesn’t change much for the better. If the app is
poorly performing, with a lousy interface and a 10-year-old code‐
base, clouds or containers won’t fix that! Ideally, you consolidate
your desired skill set by retiring old programming models and mod‐
ernize applications so that the transition to cheaper runtimes is eas‐
ier.

You Have Lots of Windows-Specific Hooks in
Your .NET Software
Given that .NET applications ran only on Windows for the past two
decades, you’d be forgiven for coupling to that operating system.

Without thinking about it, we used capabilities like Integrated Win‐
dows Authentication to verify Active Directory users. We added
strong-named assemblies to the Global Assembly Cache (GAC) so
that everyone on the server could share them. For years, it’s been
standard to use the ubiquitous Windows Registry for software set‐
tings, installation location, and more. And Windows-based software
often required drivers or MSI-installed Windows Services to run
successfully.

You Have Lots of Windows-Specific Hooks in Your .NET Software | 9

What That Means
Individually, those Windows-specific hooks aren’t bad, per se. But
using them does mean that you have some nontrivial refactoring to
do if you want to use .NET Core on Linux or are starting to experi‐
ment with containers.

Applications with the previous Windows-centric characteristics also
tend to be difficult to scale or instantiate on the fly. All that prepara‐
tion of the operating system means that adding a new server to a
cluster isn’t simple. And if someone wants a quick development or
testing environment built from scratch, there’s a lot of friction to
making that happen quickly.

Why You Want to Change
Portability and interoperability matter more than ever. When our
software is more portable, it’s easier to move quickly through devel‐
opment and testing environments into production. Portable apps
care less about their host infrastructure, giving you the freedom to
use cheaper hosts or alternate operating systems.

Most of the hooks mentioned earlier don’t directly affect interopera‐
bility. They’re local to the software itself, so from the outside looking
in, they’re implementation details. The exception? Integrated Win‐
dows Authentication. In a world in which software runs across
Linux and Windows hosts, on mobile devices or full-featured com‐
puters, and in public and private infrastructure, cross-platform
identity strategies rule. If you’re pinned to a Windows-only authen‐
tication model, this limits your flexibilty and forces you to add awk‐
ward shim solutions.

You Have Stale Environments That Aren’t
Regularly Updated
Quick—think of a place running your software that hasn’t been
updated in months or years. It’s probably not difficult. I know there
are “Hello world” apps of mine running in dozens of locations. Win‐
dows Server environments haven’t historically been easy to auto‐
mate, so the whole “treat servers like cattle versus pets” movement
passed over many companies. And I’m not just talking about pro‐
duction environments running dusty apps and unpatched operating
systems. I’m also referring to the hidden sprawl of sandboxes, per‐

10 | Chapter 2: What You Have Running Right Now

formance testing environments, and proof-of-concept clusters.
Rarely are your current .NET software or the Windows hosts that
run it updated at the rate it should.

What That Means
A stale environment is an insecure one. I’d be willing to bet that
something in your software stack becomes vulnerable every two
weeks. Unpatched Windows servers are catnip to hackers. Yes, even
servers that aren’t sitting in your internet-facing DMZ. If someone
finds a home for malicious software on a never-changing, lonely
server, it might be months or years before you notice.

Let’s also not forget about vulnerabilities in your software itself. If
you use a lot of external dependencies in your web or smart client
apps—admittedly, many classic .NET apps were light on non-
Framework dependencies—it’s your responsibility to plug those
holes regularly. Finally, if you have rarely touched infrastructure and
apps, it’s likely that you’re using long-lived credentials. This also
increases your risk exposure.

Why You Want to Change
You have this seemingly impossible task of moving faster while
becoming safer. But nobody is satisfied with the status quo. There’s
that nagging feeling about those old, unpatched servers and instan‐
ces of software. As we all build more software, we need a different
approach. Instead of hoping that you aren’t hacked, you want to
switch to a proactive stance; one in which you create and destroy
servers quickly, patch software constantly, and rotate credentials reg‐
ularly.

You Have Monolithic Architectures and
Complex Deployments
The easiest applications to build are those that have tight coupling.
It’s work to pull out C# from a codebehind page and put it into a
remote web service. Adding a message broker introduces complex‐
ity. Logging to the local machine’s Event Log is simple. A lot (most?)
of the software I’ve written in my career has been a monolith. By
that, I mean software that is part of one codebase, with collapsed

You Have Monolithic Architectures and Complex Deployments | 11

application tiers (e.g., data access code embedded in user experience
tier); that is, compiled, deployed, and scaled as a single unit.

Monoliths aren’t inherently awful. Architects like Simon Brown
advocate for “modular monoliths,” and Martin Fowler makes good
arguments for a “monolith first” approach. There are legitimate rea‐
sons to avoid the premature optimization of microservices. That
said, I suspect that your current monoliths require a delicate series
of steps for deployment, which limits how often you do it.

What That Means
If you have a monolithic .NET application, you probably aren’t reus‐
ing many of its custom components in other applications. It’s also
likely that you coarsely scale the application. When handling more
demand, you’re scaling the host for many of the components, even if
all the components aren’t consuming more resources. It also can be
challenging for you to make targeted updates to the software
without redeploying the entire thing.

When you have complex monolithic apps, you typically deploy
them less often. At least that’s my experience. That’s because integra‐
tion testing is more costly, and the installation routines are more
intricate.

Why You Want to Change
Who cares if deploying your monolithic .NET app is complicated?
You need to do it only once or twice a year! That doesn’t reflect the
rising demand for regular updates, however. As we established ear‐
lier, stale apps and environments are the enemy. They’re indicative
of increasingly irrelevant software and vulnerable servers. We want
to move faster.

By rethinking our architecture, we stand to deploy in smaller
batches, run different components on differently sized hosts, scale
only the components that need it, and cater to more parallel soft‐
ware development team.

You Have Apps Without Deployment Pipelines
Are you envious of these software-driven companies that can ship
software any time they want? What’s their secret?

12 | Chapter 2: What You Have Running Right Now

http://bit.ly/2PVvQgd
http://bit.ly/2qaN1iz

You probably look at the web-scale giants who update their software
every 10 minutes and think “That’s crazy, we don’t need anything
like that.” It’s likely true that your enterprise software or APIs won’t
have features added daily. But you’ve seen so far that continually
updating .NET apps and infrastructure is about more than just fea‐
tures. You want to close security holes, patch software bugs, and
more. How do companies ship so often? Deployment pipelines are a
big piece of that puzzle.

What That Means
If your apps aren’t on a pipeline, they typically consist of pockets of
automation (such as continuous integration) intermixed with end‐
less handoffs and manual processes. The problem is that you’re only
as fast as your limiting factor. If your quality assurance (QA) team
has a manual review stage, it barely matters if you automate the
steps before and after. If you automate the steps before QA, you’ll
just pile up work for them. Automating the steps after? Those stages
will be starved for work because they can handle much more than
upstream processes can hand them.

Even if speed isn’t your biggest concern, quality should be some‐
thing you care about. When your apps are delivered manually, they
tend to be more error prone and subject to ad hoc adjustments. This
results in inconsistencies that bite you later.

Why You Want to Change
I would contend that “.NET apps on pipeline” is one of the most
important metrics you can track. Such an investment in automation
is worth it. Consider what happens when you automate your inte‐
gration testing: developers get faster feedback and have smaller
batches of changed code to check when problems arise.

Another benefit? When deployments are automated, it reduces the
perceived cost of deployment to zero. This means that teams feel
empowered to quickly fix bugs, patch vulnerabilities, perform A/B
testing on new feature ideas, and respond to the needs of related
teams. Small batches, constantly delivered. That’s one of the secrets
of the cloud-natives!

You Have Apps Without Deployment Pipelines | 13

You Have Apps That Aren’t Ready for Higher-
Order Cloud Runtimes
If you have .NET apps created in 2006 or earlier, you probably
weren’t thinking of cloud computing when designing them! Many
first-generation cloud platforms were fairly prescriptive on what
could run there, and none of them were Windows-friendly. That
might have stunted the introduction of cloud-native patterns to
many organizations. A lot of custom-built enterprise .NET apps use
design patterns suitable for an on-premises environment that
doesn’t change quickly or handle unpredictable load.

What That Means
If you have a lot of “traditional” .NET applications in your portfolio,
it limits which cloud runtimes make sense. Specifically, apps that
don’t have cloud-native characteristics aren’t a great fit for anything
besides virtual machines—basic lift-and-shift exercises. In Chap‐
ter 1, we discussed the fact that there’s limited value in that effort.
Some value, but limited. Ideally, your apps can take advantage of
more on-demand services with elastic scale. And if your software
has complex deployment routines, a cloud platform won’t magically
make that easier.

Why You Want to Change
Why do people like you embrace the cloud-computing model?
Because agility matters. You gain competitive advantage when you
can ship useful technology more often and make it easier to use.
Cloud computing ushered in this era of on-demand access to seem‐
ingly limitless resources, along with a host of novel services for data‐
bases, machine learning, and more. If your app isn’t cloud-ready—
whether that app is going to a public or private cloud environment
—you’ll never get more than superficial value.

Summary
Depressed? You shouldn’t be! We all start from somewhere, and
your existing app portfolio got you to where you are today. Next up,
let’s examine what you’re being asked to create today and what you
need to pay attention to as you make your software decisions.

14 | Chapter 2: What You Have Running Right Now

CHAPTER 3

The .NET Software You’re
Asked to Create

Every company is powered by people, not software. Still, what an
amazing time to be a software developer! We’ve never been able to
create more powerful experiences all while expending less effort.
And it’s remarkable to see the role that software plays in every
modern business. Pick an industry: education, healthcare, manufac‐
turing, real estate, gaming, finance, retail; you name it. You’ll find
records systems, marketplace platforms, streaming media, booking
systems, and tons more. To satisfy the needs of your company,
you’re probably running .NET software in local datacenters, coloca‐
tion facilities, and public clouds. In this chapter, we look at the cate‐
gories of software you’re asked to build today. This exploration
matters because it determines what capabilities we need out of our
new and modernized software.

Behind-the-Firewall Enterprise Apps
Today, an increasing amount of custom software targets an outside
audience. But I’m not seeing a drop-off in demand for new and
updated software used by internal staff.

To be sure, just because something isn’t internet-accessible doesn’t
mean it’s on your own infrastructure. Enterprise apps might run on-
premises, in a colocation facility, or even in a public cloud with iso‐
lated networks and a private connection.

15

Let’s talk about the apps themselves. You’re getting requests for new
standalone apps. Demand comes when teams outgrow their compli‐
cated Microsoft Excel spreadsheet solutions, for instance. Or, when
new business dictates fresh tools to collect, edit, and share informa‐
tion. A lot of enterprise applications also extend existing commer‐
cial software. This might be interfaces that add functionality to an
existing Enterprise Resource Planning (ERP) system, mainframe
environment, or industry-specific software. Think of a simplified
intake form that lets employees add product inventory without
accessing the complex back-office system of record.

You’re creating all of these enterprise apps in a few different ways.
Many of you still crank out desktop apps using Windows Forms or
WPF. Web apps are clearly becoming a default option. And there’s
the workflow-driven custom apps built in “low code” platforms like
OutSystems and Pega.

Real-Time Processing Systems
Why all this enterprise attention on developing software? Because
we expect the companies that we deal with to make our lives easier.
Nowadays, that’s through technology. One way companies deliver
value through technology is by reacting faster to changing customer
needs. This puts a premium on systems that provide up-to-date
insight into your business.

Do you want to find out tomorrow that you’re out of flu shots in one
of your sickest cities? In a hot real estate market, can you afford to
discover newly listed homes a week after they went up for sale?
What happens if you discover your hotel is grossly overbooked after
a partner website sends over a dozen reservations at once?

The heyday of nightly batch processes and weekly data file uploads
is over. Your business units are asking for real-time systems that
quickly ingest and process data. Now, there’s still a place for complex
batch analytics. But increasingly, companies use those to comple‐
ment real-time behavior. For instance, you might generate machine
learning models using the rich data in your warehouse. Those mod‐
els then become accessible to your messaging or event stream–pro‐
cessing engines as new data arrives.

Here’s a class of application for which you might find yourself using
more bleeding-edge technologies and architecture patterns; use an

16 | Chapter 3: The .NET Software You’re Asked to Create

event stream processor like Apache Kafka or Amazon Kinesis for
high-speed ingest. Or stand up lightweight message brokers like
RabbitMQ or NATS to route data to target systems. Maybe you’ll
introduce TensorFlow to build and train machine learning models.
How do people get the results of this real-time processing? Your web
applications might use SignalR for server-to-client push scenarios,
or you could introduce notification engines like Microsoft Azure
Notification Hubs to send mobile alerts. When you start building
real-time processing systems, there’s a great chance that you’ll dis‐
cover a whole range of new technologies and architectures.

Public-Facing Web Applications
Unlike a decade ago, you’re probably spending a fair amount of time
building web applications used by outside users, whether customers
or partners.

For many companies, this represents a big departure from the soft‐
ware they’re used to building. Instead of creating internal applica‐
tions supporting hundreds or thousands of people, you’re building
internet-facing apps targeting an unpredictable global audience.
You’re asked to build not only static sites to advertise new brands or
one-off promotions, but also full-featured platforms for collecting
data, selling products, serving up media, or aggregating information
from dozens of sources. And all of this for a population expecting
24×7 availability and split-second latency. Gulp!

The predominant way to build these public-facing web apps today is
to rely more heavily on client-side JavaScript rather than stashing
compute-intensive logic on the server. Data retrieved from API calls
is asynchronously loaded on the page. All of this requires a different
architecture for storing, updating, and retrieving data—not to men‐
tion the adjustments to web application and API design. But I sus‐
pect you’ll find yourself creating more of these types of applications,
not fewer. Now’s a great time to absorb and implement modern
techniques for these applications.

Mobile-Friendly Solutions
There’s no doubt that the mobile experience is crucial for nearly
every business today. It’s a deciding factor for plenty of consumers
when they’re choosing banks, grocery stores, airlines, and even

Public-Facing Web Applications | 17

health clubs. The information available at our fingertips is breath‐
taking. Is your company delivering its key consumer, partner, and
employee services via mobile?

When I say “mobile,” I consider both native apps and mobile-
friendly web experiences. Your stakeholders probably ask for both.
Embracing the native application model is powerful but brings with
it new considerations for application coding, software delivery, and
notification strategy. If you’re satisfied offering a web-only experi‐
ence to customers, you still need to consider low-bandwidth con‐
sumers, response time, and spotty connections. Either way, your
architecture and toolchain is undergoing a refresh to accommodate
this increasingly dominant way of consuming your company’s serv‐
ices.

APIs for Internal Apps and Partners
What’s powering all of these modern applications—web, streaming,
mobile, or otherwise? Application programming interfaces, or APIs.
APIs make it simpler for applications to talk to one another. You
interact with APIs constantly whether you know it or not. Every
time you see an embedded YouTube video or Twitter tweet, post a
message to a Slack channel, or read email from an Exchange Server,
it’s thanks to APIs.

We often associate APIs with public RESTful web services invoked
over HTTP. But APIs can be private, use non-HTTP TCP ports, and
exchange a variety of payload formats. Heck, the operating system
on your computer is full of APIs.

Your business stakeholders want more collaborative systems. No
software is an island. You could create a tight coupling between
application databases, but that hampers your flexibility later on. You
could directly embed native API calls to communicate between sys‐
tems, but again, that’s unwanted coupling. No, I’d be willing to bet
that you’re creating more web service APIs than virtually any other
type of software right now. As you construct more decoupled micro‐
services architectures, you invest in well-designed APIs that abstract
away the details of the underlying system.

Building web APIs requires a handful of new considerations. Do you
need an API gateway for mediation? You know, for things like
authorization, token transformation, caching, and rate limiting?

18 | Chapter 3: The .NET Software You’re Asked to Create

Will you have a database per service, or figure out how to share data
stores among various services? Can your web service handle unex‐
pected traffic from mobile clients, partner systems, and internal
applications? The web services you built in 2007 are probably in
need of a refresh to handle today’s demands!

Summary
In this chapter, we looked at the categories of software that your
company cares about most right now. Some of those represent
things you’ve been building for years, like internal applications. Oth‐
ers, such as streaming systems, are fairly new in most companies. Is
there a set of criteria you can measure against as you consider how
to modernize .NET applications to fit into this new world? Yes, and
in Chapter 4, we look at what it means to be “cloud-native” and why
you should care.

Summary | 19

CHAPTER 4

What Does Cloud Native Look Like?

So far, we’ve looked at what .NET apps you’re running today, and
what you’ve been asked to build tomorrow. What is the one constant
running through almost every request you now get? Make the soft‐
ware more scalable, more adaptable to change, more tolerant of fail‐
ure, and more manageable. That’s the essence of what it means to be
“cloud-native.” In this chapter, we look at the ideas behind cloud-
native architectures, and why it matters to your .NET applications.

Defining Cloud Native
You’ll find many different definitions of cloud native. The charter of
the Cloud Native Computing Foundation states that cloud-native
systems are “container packed,” “dynamically managed,” and “micro-
service oriented.” That’s too implementation centric for my taste, but
its official definition of cloud-native is more on point:

Cloud native technologies empower organizations to build and run
scalable applications in modern, dynamic environments such as
public, private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative APIs
exemplify this approach.
These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation,
they allow engineers to make high-impact changes frequently and
predictably with minimal toil.

Pivotal uses a definition along those lines:

21

http://bit.ly/2OM7NDT
http://bit.ly/2OM7NDT
http://bit.ly/2D4dDdv
http://bit.ly/2Pr6gT4

Cloud-native is an approach to building and running applications
that exploits the advantages of the cloud computing delivery model.
Cloud-native is about how applications are created and deployed,
not where.

Joe Beda, one of the creators of Kubernetes, takes it a step further:
At its root, Cloud Native is structuring teams, culture and technol‐
ogy to utilize automation and architectures to manage complexity
and unlock velocity.

There’s truth in all of these. But what you should take away from
these definitions is that cloud native refers to how, not where. It’s
about achieving better business outcomes through empowered
teams that deliver more scalable, resilient, operable software.

Why Cloud-Native Matters
Why should your .NET apps be cloud-native? Does it really matter
and is it worth the effort? What it boils down to is getting better at
software: designing it, building it, running it.

For the purpose of this discussion, let’s equate “good at software”
with “delivering cloud-native software.” By the end of this chapter, I
hope you’ll agree with me.

Let’s look at five reasons why you need to be good at software.

Customers Expect It
You know what’s not cool anymore? Maintenance windows. Or
annual software releases. Sluggish performance? Can’t have that. No,
you expect every business you deal with—whether it’s your bank,
neighborhood social network, streaming media provider, or your
own employer—to deliver digital experiences that are always avail‐
able, constantly updated, secure by default, and blazingly fast. That’s
virtually impossible to achieve with software we wrote 10 years ago!

It Helps You Meet the Demands to Operate at Scale
If becoming cloud natives requires us to create more software and
machinery to support it, we absolutely need to evolve our approach
to operations. Organizations want to flip their spending ratio and
invest more on innovation and less on maintaining. Noble goal!
That cannot happen without doubling down on automation and
reducing toil. And you can’t introduce massive amounts of automa‐

22 | Chapter 4: What Does Cloud Native Look Like?

http://bit.ly/2qbEtrz

tion without a culture, team structure, codebase, and platform that
accommodates it.

It Gives You More Business Options
When you’re good at software, all of a sudden you have fresh oppor‐
tunities. Telecommunications companies can react quickly to unmet
need by reconfiguring mobile data plans. Automobile companies
can start ride-sharing or rental services. Manufacturing companies
have the choice to sell machine data to third parties. And companies
in all sectors can expand into new markets, run quick experiments,
and find new revenue streams—all possible, and likely, when you get
good at software.

Your Competitors Are Improving
It’s rare to find pure monopolies today. Most of us have a choice of
who we do business with in most aspects of our lives. This con‐
sumer control puts companies on notice: if you don’t give me the
service I want, I’ll switch to someone who will! Your alternative
might be a traditional competitor, customer-centric startup, or,
increasingly, an internet giant with deep pockets and an eye for
expansion. If you don’t learn how to deliver valuable software that
meets or exceeds expectations, you’ll enter an irreversible decline.

It Makes Your Life Better
If you want, ignore all the preceding arguments. If for no other rea‐
son, improve your software acumen so that you enjoy work again.
This is the best time ever to build software. Never have we been able
to do so much with so little (relative) effort. If you’re miserable at
work, something’s wrong. Become a cloud native so that you can
offload mind-numbing operational tasks and get regular shots of
dopamine from seeing people use the software you’ve built. Ship
early and often, and use platforms that “run” the software effectively.

Characteristics of Cloud-Native Apps
Okay, I have you hooked. This all sounds great, you say. Can I just
containerize my app and it will become cloud native? No, no you
can’t. Let’s talk about what a cloud-native app looks like.

Characteristics of Cloud-Native Apps | 23

They Meet the 15-factor Criteria
How you package your software doesn’t make it cloud native. It’s
about the software itself! The now-famous 12-factor criteria calls
out traits for scalable, modern apps. It includes items like explicitly
declared dependencies, stateless processes, scale out versus scale up,
fast startup and graceful shutdown, and treating logs as event
streams. As my former colleague Kevin Hoffman says in his book
Beyond the 12 Factor App (O’Reilly):

The goal of these 12 factors was to teach developers how to build
cloud-ready applications that had declarative formats for automa‐
tion and setup, had a clean contract with the underlying operating
system, and were dynamically scalable.

Kevin added three factors to the standard list: API-first design,
heavy use of telemetry, and security through authentication and
authorization. Even though you don’t need to blindly adhere to all
15 factors, the more of them that you comply with, the more cloud-
ready your software will be.

They’re Decoupled and Designed for Change
Microservices: you can’t stop hearing about them! Let’s ignore the
hype. In reality, the point of this architectural paradigm is to decom‐
pose hard-to-change monolithic systems. Those decomposed com‐
ponents, or microservices, typically align with a business domain. A
microservice isn’t defined by how many lines of code it contains, but
by its single-purpose focus.

As you decompose systems into these bounded contexts, you get
some benefits:

• You now have a smaller deployment surface. Make targeted
changes, and deploy each change without bundling up the
entire system.

• Microservices help you to scale your teams. Instead of all engi‐
neers working on a set of interwoven components, smaller
teams can narrow their focus and work on the change cycle that
works for them.

• By teasing apart your system, you get the opportunity to intro‐
duce new technologies with a limited blast radius. Maybe the
entire system doesn’t need to use a document database instead

24 | Chapter 4: What Does Cloud Native Look Like?

https://12factor.net/
https://oreil.ly/2O5VMnm

of a relational one, but it makes sense for this particular micro‐
service.

• Microservices add value by supporting smarter deployments.
Instead of coarsely scaling the entire system up or down, you
have the choice of surgically scaling stressed components. This
lets you keep an optimized infrastructure footprint and avoid
adding capacity where it isn’t needed.

To be fair, a microservices architecture isn’t always the answer. You
might be better off with a modular monolith, as mentioned in Chap‐
ter 2. But if you go down the path of microservices as a way to ach‐
ieve the cloud agility you’re after, there’s a lot to consider. We discuss
the specifics in upcoming chapters, but you’ll have a new series of
questions to answer. What’s a repeatable way to uncover the bound‐
aries of a service? How do I discover services at runtime? How can I
avoid cascading failures? Is my current monitoring strategy set up
for an explosion of things to monitor? Where do I start trouble‐
shooting? Stay tuned for the answers.

They’re Continuously Delivered
If your software is continuously delivered, you might be a cloud
native. Unlike continuous deployment—in which changes are auto‐
matically pushed to production—continuous delivery is about going
to production whenever you want. You might stage deployments for
business reasons, but the current version is ready at any time.

What does it take to get here? A fair bit. It all begins with tests. My
Pivotal colleagues laid this out. To go fast (through continuous
delivery), you need clean code. Bad code slows you down. To ach‐
ieve clean code, you need to constantly refactor. To be brave enough
to constantly refactor, you need confidence that you won’t break
your running software. To have confidence, you need tests.

A continuously integrated/continuously delivered (CI/CD) culture
affects more than just your software team. It requires buy-in
throughout the company. Cloud natives have that. There’s an institu‐
tional imperative to get value into the hands of customers as quickly
as possible. At many enterprises, this is a fundamental shift. It
changes how you fund IT, how you arrange teams, what skills you
hire for, how marketing delivers the message, and so much more.
But this improvement in responsiveness is game-changing for every
company that employs it.

Characteristics of Cloud-Native Apps | 25

http://bit.ly/2Q39t8o

They’re Built and Run by Empowered Teams
This is where DevOps comes into the picture. And not the watered-
down version of DevOps in which you just rename your release
engineering team or add some fancy monitoring dashboards. No,
I’m talking about a singular focus on customer value. The result?
You have an aligned team that includes all the skills needed to
design, build, and run the “service” offered to customers. You focus
on small batches and regular releases so that you can quickly learn
and improve the service. Your teams swarm on production issues,
fix issues without spraying blame, and thoughtfully consider how to
prevent that issue from happening again.

Cloud natives do this. They don’t have a software factory where the
work product is handed between silos. They don’t have production
support teams responsible for dozens of individual systems. And
they don’t arrange their work around IT projects. There’s no doubt
that this model represents a change in how most big companies
operate today. But the name of the game is “who learns from cus‐
tomers the fastest,” and the way to win is to organize and empower
your teams to focus on the customer experience.

They’re Resilient in the Face of Failure
Everything fails. You can’t prevent hardware, networks, software, or
facilities from going down or experiencing disruptions. It will hap‐
pen. Cloud-native apps laugh in the face of failure! They not only
expect failure, they purposely inject it into the system to see what
happens.

Cloud natives create software services that stay online in virtually all
circumstances. Do they do that by provisioning premium hardware
and gold-plated databases? No. Frankly, they do it with commodity
hardware and custom-built or open source software. But the key is
how they use that technology. It’s about smart redundancy. They use
modern databases (and caches) that tolerate network partitions and
scale rapidly. These cloud natives use well-instrumented systems
and ubiquitous automation to detect problems and respond imme‐
diately. And even if all those things fail, they deploy via automation
so that they can stand up cloned environments in short order.

The other resilience angle relates to intentionally trying to break
things. Even in production. Chaos engineering is about “experi‐

26 | Chapter 4: What Does Cloud Native Look Like?

https://principlesofchaos.org/

ments to uncover systemic weaknesses.” This software engineering
discipline is about continuous improvement and recognizing that in
complex distributed systems, we need to constantly probe for weak‐
nesses.

Thinking Beyond “Apps” for Cloud-Native
Software
Thus far, we’ve looked at cloud-native applications. There’s more to
the story than that. I often consider at least four other areas where
cloud-native comes into play: infrastructure, security, data, and inte‐
gration. If you leave these out of your strategy, you’ll find that you’re
still experiencing a constraint that limits your velocity and quality.

Can you have cloud-native infrastructure? Sure you can. Cloud-
native infrastructure, as defined in the book of the same name, is
“hidden by useful abstractions, controlled by APIs, managed by soft‐
ware, and has the purpose of running applications.” This is about
software-controlled infrastructure that results in more consistent
provisioning, improved resilience, and simpler maintainability.
Using a public cloud doesn’t automatically mean that you’re using a
cloud-native infrastructure approach. Not if you log in to individual
machines, build servers via tickets and portals, and colocate all your
apps on a few giant servers.

Your existing security strategy might not survive a cloud-native
transformation. Cloud-native security reflects the fact that you need
to “move fast to stay safe,” as Pivotal Chief Security Officer Justin
Smith likes to say. Malware and advanced persistent threats are
evolving faster than ever. Leaked credentials continue to cause major
issues. And the monitoring-centric approach isn’t good enough. It’s
time to become more proactive. At Pivotal, we talk about the 3 Rs:

• Quickly repair vulnerable software and infrastructure. In the
cloud, that might mean being able to patch multiple times per
day.

• Repave your infrastructure constantly to eliminate hiding places
for malware and stay in a consistent, patched state.

• Finally, rotate credentials regularly. Shrink the amount of time
that credentials are useful. All of these combine to reduce your
risk in a cloud-native world.

Thinking Beyond “Apps” for Cloud-Native Software | 27

https://oreil.ly/2yHO1PX

You won’t achieve your desired outcomes if you transform how you
build apps but keep the same data strategy. You need a cloud-native
data approach. Your databases and data processing must be biased
toward changeabilty, scalability, resilience, and manageability. That
means offering different types of databases—relational, key/value,
document, graph, caches, and more—for different microservices.
When you start having databases scoped to a given microservice,
you need to rethink how you provision, update, and manage all
these instances. How you collect, transmit, store, and interact will
change. Be ready!

After you “solve” the throughput issues related to infrastructure,
security, apps, and data, you’ll find one more holdout: integration.
Much of my career was spent in the application integration space. I
saw most companies invest in centers of excellence with expert
resources who programmed complex, powerful integration prod‐
ucts. The problem? Those teams (and tools) become bottlenecks. If
everything can’t be continuously delivered, I can move only as fast as
my constraint. To rethink how you connect systems together, you’ll
want to introduce cloud-native integration. Wherever possible, inte‐
gration should be self-service, distributed (not centralized), built to
scale, open to changes, and delivered via automation. That’s not an
easy task, but it’s one that will pay real dividends.

Measuring Your Progress Toward Becoming
Cloud Native
Are you actually getting better at building software? Are you func‐
tioning as a cloud native yet? How you answer that question is criti‐
cal. Measure your progress through outcomes, not output. Just as
“lines of code” doesn’t mean you’re a more productive software
developer, neither does “deploys per day” necessarily mean you’re
improving in the right ways. What is a useful mental model for
measuring your progress?

At Pivotal, we talk about 5 S’s: speed, stability, scalability, security,
and savings. Are you learning and responding faster? That’s speed.
You can measure your improvement in lead time—the time from
order/request to final delivery. If you are getting ideas and bug fixes
to production faster, that’s a tangible thing to measure. Here’s one
key metric: how many apps are on pipelines. That’s an indicator that
you can quickly deploy code. Stability? Keep an eye on uptime, and

28 | Chapter 4: What Does Cloud Native Look Like?

resilience in the face of failures. High performers have a constantly
improving mean time to recovery. Customers see less downtime,
even if underlying components stumble. Companies observe scala‐
bility improvement in a few places. Individual systems and services
handle increasing traffic with consistently low latency. Measure the
time it takes to add or remove capacity in seconds, not weeks or
months. What are the right security metrics to monitor? Consider
how long it takes to patch apps and infrastructure. Or what percent‐
age of apps and infrastructure are 100% up to date on patches. And
don’t forget about how long your servers live, or how often you cycle
credentials.

Finally, if you’re good at software, you’re going to save money. Oh,
you might find yourself spending more money because you create
new computing environments and write more software. But the cost
per unit decreases as you automate infrastructure, deliver work
incrementally, and build in security up front.

Summary
There’s even more to consider here. For an exceptional look at how
to measure the right things in your software transformation, pick up
the book Accelerate by Nicole Forsgren and team. It will definitely
help you focus your attention in the right places. In Chapter 5, we
take a closer look at how you choose between the .NET Framework
and .NET Core for your cloud-native software.

Summary | 29

http://bit.ly/2qjfq5U

CHAPTER 5

Choosing Between .NET
Framework and .NET Core

I first got my hands on the .NET Framework in July 2000. Some col‐
leagues went to Microsoft’s Professional Developers Conference
(PDC) and came back with the just-announced technical-preview
bits. The installation bricked my laptop, but I wasn’t deterred. Thus
began a long love affair with one of the most powerful software
frameworks ever built. But now things are changing, thanks to .NET
Core. Should you still use the .NET Framework for new apps? How
about when modernizing them? In this chapter, we dig into those
questions.

A Bit of History Regarding the .NET
Framework
Travel back with me to the year 1998. Were you building software
with Microsoft technologies? First, you could build apps or compo‐
nents with C/C++ and use big Windows-centric pieces like Micro‐
soft Foundation Class Library (MFC) and the Component Object
Model (COM). Another option was Visual Basic. Here, you sacri‐
ficed low-level control in exchange for a very simple way to build
data-driven apps with a nice graphical user interface. Or, you might
have started your web development career building Active Server
Pages (ASP) with gobs of server-side scripting.

31

The .NET Framework changed the game. Microsoft introduced the
Common Language Runtime (CLR). This application virtual
machine executed code compiled down to an Intermediate Lan‐
guage (IL) and offered capabilities like thread management, garbage
collection, memory management, and more. Any app written
for .NET ran in the CLR.

Software written in multiple languages—including the brand new
C#—had shared access to the Framework Class Library (FCL). The
FCL (with the Base Class Libraries at its core) offered a unified way
for different apps written in different languages to perform data
access, web application development, input/output (I/O), network
communication, and more. These shared libraries also defined
higher-order constructs like ADO.NET, and ASP.NET Windows
Forms, and, later on, things like the Windows Communication
Foundation (WCF) and the Windows Presentation Foundation
(WPF).

Web development took off shortly after the release of the .NET
Framework 1.0 in 2002. ASP.NET offered an easy-to-use program‐
ming model, and many countries saw the explosion of broadband
availability that made rich web applications usable. However, that
simple programming model came at a cost. Developers were explic‐
itly shielded from actual web programming. Most of the work was
server side, with little JavaScript or HTML interaction. If you
needed smart UX components, you bought them from software ven‐
dors and baked those controls into your ASP.NET app. ASP.NET
Web Services let us expose a SOAP endpoint by adding a basic
annotation to a function. As a result, I paid little attention to the
HTTP processing pipeline. All of these .NET web applications were
also closely intertwined with the Internet Information Services (IIS)
web server.

Over the years, the .NET Framework fragmented to support the
needs of specific platforms. Each of these platforms—including Sil‐
verlight, Windows Phone, and ASP.NET 4—diverged slightly on
application model, framework surface, and runtime. Even though
the .NET framework was optimized for a given platform, this frag‐
mentation made it tough to build cross-platform systems.

Although all of these design decisions improved developer produc‐
tivity, they began to become a hindrance as demand increased for

32 | Chapter 5: Choosing Between .NET Framework and .NET Core

http://bit.ly/2PlboZa

more lightweight, cross-platform applications. The built-in over‐
head and abstractions were getting in the way.

The Introduction of .NET Core
Announced in 2014 and released in 2016, .NET Core represents a
modern take on application development. It’s entirely open source.
It’s modular, lightweight, and compatible with Windows, Linux, and
macOS.

Let’s dig into the major differences between the .NET Framework
and .NET Core:

• First, .NET Core is more modular. Instead of inheriting the
entire .NET Framework and massive assemblies like sys‐
tem.web, .NET Core brings in dependencies as NuGet packages.
You add only what’s needed for a given app. This makes your
applications smaller, less memory-hungry, and more amenable
to container-based deployment.

• What’s also new is the front-and-center use of a command-line
interface (CLI) for .NET developers. Although there were CLI
tools before, many .NET developers treated the Visual Studio
development environment as their gateway to .NET develop‐
ment. No longer. From the .NET Core CLI, you can create
projects, add packages, restore dependencies, build projects, run
the app, and much more. And with the introduction of Visual
Studio Code, Visual Studio for Mac, and JetBrains Rider, .NET
developers have a wealth of options for building apps.

• For the web developer, ASP.NET Core ushers in a variety of
changes to the programming model, as well. Gone are the
global.asax and web.config files. Now, you have a new approach
to middleware, application startup, and patterns like depend‐
ency injection. An ASP.NET Core web app is actually a console
app that instantiates a web server. The lightweight Kestrel web
server is the default option, and you have more control than
ever before over the request handling pipeline. These asynchro‐
nous pipelines have access to middleware that handles static
files, authentication, routing, and more. What happened to the
web.config file from ASP.NET? An ASP.NET Core app uses an
extensible configuration provider that lets you pull in configu‐

The Introduction of .NET Core | 33

ration data from a variety of sources—JSON, XML, environ‐
ment variables, and in-memory .NET objects, for instance.

• Not everything from the .NET Framework made its way
into .NET Core. Today, it supports ASP.NET Core (web apps),
console applications, class libraries, and Universal Windows
Platform (Windows Store) apps. Microsoft announced
that .NET Core 3.0 would also support desktop application
frameworks like Windows Forms and WPF. But don’t hold you
breath for classic .NET Framework services like WCF or Win‐
dows Workflow Foundation (WF) to make it over. Neither is
under active development by Microsoft, and porting to .NET
Core seems unlikely.

Deciding Which to Use When
Modernizing .NET Apps
Pretty clear cut, eh? Drop everything and get your apps over
to .NET Core? It’s not that easy.

It appears that .NET Core is the future. To be sure, Microsoft con‐
tinues to iterate on .NET Framework and dutifully issues updates.
It’s not a “legacy” platform or scheduled for retirement. It’s a robust,
mature framework. But Microsoft’s focus is clearly on .NET Core
and encouraging developers to adopt it as their base framework for
all future development.

Microsoft issues some of its own guidance about when you should
use each. For example, Microsoft suggests that you should stick with
the .NET Framework if your app already uses it, you depend on
third-party libraries or technologies that aren’t available for .NET
Core, or you’re using a .NET technology (like WCF or WF) that isn’t
coming to .NET Core. Conversely, Microsoft recommends .NET
Core if you have cross-platform development or deployment needs,
you’re deploying apps into containers, you want high performance
with minimal infrastructure, and you run apps with different ver‐
sions of .NET on the same machine.

Summary
Don’t replatform .NET Framework apps to .NET Core just
because .NET Core is new. Do it only because you’re getting legiti‐

34 | Chapter 5: Choosing Between .NET Framework and .NET Core

http://bit.ly/2Sm05hI
http://bit.ly/2PnNjRp
http://bit.ly/2PnNjRp

mate value for the effort. Would replatforming to .NET Core enable
you to deliver features faster? Would it allow you to use less expen‐
sive hardware and operating systems? Does it support the testing
and release automation tools that your company depends on for
apps written in other programming languages?

Even though your new .NET development might happen in .NET
Core, your existing portfolio of apps might only incrementally
migrate over. In Chapter 7, we look at the specific recipes for how to
modernize those applications that benefit from an upgrade.

Summary | 35

CHAPTER 6

The New .NET Antipatterns

Out with the old! To modernize .NET applications and get the bene‐
fits of cloud native—remember, it’s about software that’s more scala‐
ble, more adaptable to change, more tolerant of failure, and more
manageable—we need a different approach. How we built software a
decade ago was a reflection of the use cases, technologies, and
knowledge we had then. Although we don’t apologize for that, all of
those aspects have evolved. And quickly! In this chapter, we take a
look at a handful of things that we used to do with our .NET apps
and why they now represent antipatterns.

These items are “antipatterns” because they make it more difficult
for your software to behave in a cloud-native fashion. These patterns
are not inherently awful, but they no longer reflect best practices.
For each item, I call out why you should avoid it, and what you
should do instead.

.NET Application Architecture Antipatterns
These antipatterns directly relate to how you build the functionality
of your application. As you modernize your .NET software, these
are things that demand refactoring.

In-Process State
ASP.NET makes it super easy to store and retrieve values across user
requests. Are you planning on stashing customer-entered data
through a multipage wizard experience? Just use the following:

37

Session["CustomerName"] = txtCustomerName.Text;

Although ASP.NET offers multiple storage options for session state,
the default behavior is to store this information in the host server’s
memory. Combine this with sticky session routing from your load
balancer, and you were good to go.

So what’s the problem? Scalability and fault tolerance. When you pin
anything to an individual server, you’re asking for trouble. What
happens if you’re in a container that gets shut down? Or what if
server instances rapidly scale out to handle load, but your user can’t
escape the overburdened server on which their session is trapped?
Cloud natives store session information in a highly available, off-
box database that all application instances share.

Integrated Windows Authentication
I’m guilty of using this a lot during my earlier days of coding. For
corporate application users, this Windows capability made it easy to
create a single sign-on (SSO) experience. Just mix Internet Explorer,
Windows desktops, Active Directory, and an IIS web server for free
SSO! Although this combo transparently handled the various secu‐
rity handshakes, it also tightly coupled you to Windows environ‐
ments. At times, it also demanded interactive sessions in which a
user needed to key in their credentials.

How is this in conflict with cloud-native principles? It negatively
affects software scale and portability. This pattern doesn’t work out‐
side of domain-joined Windows Server environments. So there goes
any Linux servers in your architecture. It also means that non-.NET
applications have a trickier time authenticating and authorizing
users in this environment. Microsoft’s recommendation for modern
web apps? Use OpenID Connect for authentication. You can still use
Active Directory as an identity provider if you want, but through
OpenID Connect and OAuth 2.0, you take advantage of a standard
flow and interface that are usable across operating systems and pro‐
gramming languages.

Using Custom ISAPI Filters or IIS Modules and Handlers
There’s no question that Internet Information Server (IIS) for Win‐
dows is a powerful web server. For years, Windows-based program‐
mers took advantage of IIS extensibility to augment their web
applications. We developed C-based ISAPI filters that acted on indi‐

38 | Chapter 6: The New .NET Antipatterns

https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code

vidual sites, or all sites on the server. These filters changed incoming
request data, modified responses, performed custom logging, and
much more. In later versions of IIS (starting with 7.0), we could
use .NET to build modules, which affect all requests, or handlers,
which affect specific request paths or extensions.

Now? Stop creating these. It makes it more difficult to change your
software later, and affects manageability. We want software that
doesn’t require any preconfiguration on the target host. This ensures
more consistent, speedy deployments and scaling exercises. Every‐
thing our software needs to run is part of the deployment package,
and scoped to just that deployment. You can’t expect that serverwide
configurations or ISAPI filters are preinstalled anywhere. Put any
HTTP request handling into code that’s part of your app. Or, take
advantage of the built-in request handling capabilities included in
your application platform or service mesh. Just get those capabilities
out of the host!

Using the Local Disk for Storage
It’s hard to think of an application that doesn’t use some sort of stor‐
age. One straightforward choice for .NET developers is storage that’s
attached to the host machine. It’s just so easy! Every Windows vir‐
tual machine has a C:\ drive, at minimum. Heck, the Microsoft doc‐
umentation for the File class has you create a C:\temp folder to try
out the code. Why not use this accessible storage to stash uploaded
images or stream out media files?

Using local storage limits your scalability and affects your fault tol‐
erance. In a cloud-native world, hosts are ephemeral. They live for
short periods. Treat anything on a local disk as replaceable. Instead
of using local storage, switch to a highly available file share or, even
better, object storage. Modern object storage—in the public cloud or
on-premises—offers HTTP APIs, strong durability, and impressive
scale. You can still use local storage, but treat it as a scratch location
for temporary content.

Building and Running Windows Services
Chapter 2 discusses the many types of .NET software. Windows
Services run as long-running background jobs without a user inter‐
face. They often start when the machine starts, and can run in their
own security context. These types of apps offer a useful mechanism

.NET Application Architecture Antipatterns | 39

http://bit.ly/2PrFLxa
http://bit.ly/2PrFLxa

for executing scheduled activities—empty out an FTP share every
evening—or never-ending processing, such as pulling new purchase
orders from a job queue.

Why aren’t these friendly to cloud-native architectures? You might
find them slowing down your change rate or limiting your manage‐
ability. First, like IIS antipatterns, they’re Windows specific. Second,
Windows Services aren’t platform managed; they’re managed by the
OS. A server manages its Windows Services. In a cloud-native
world, platforms manage software. They schedule and monitor the
workloads. And finally, Windows Services aren’t a truly native part
of .NET Core. There are workarounds, but as of this writing, it’s not
straightforward. Your best bet for background work is to cre‐
ate .NET Framework or .NET Core console applications that are
deployed to a platform and easily scale to meet demand.

Leveraging the MSDTC
Back in the day, I spent many hours wrangling with the Microsoft
Distributed Transaction Coordinator (MSDTC), a native Windows
component for executing two-phase-commit transactions across
distributed resources. The capability is tantalizing: create an all-or-
nothing operation set that spans databases, message queues, and
file-systems. The reality didn’t always match the dream. There
weren’t many supported backend systems, and I inevitably bumped
into some strange edge case. Your modern apps might not use
MSDTC, but I’d bet that you have some modernization candidates
that are drenched in distributed transactions.

So is MSDTC just complicated, or actually an antipattern? It’s the
latter. It doesn’t work with modern (cloud) data sources or messag‐
ing technologies and is Windows only. And, most important, it rep‐
resents a pattern (“distributed transactions”) that is counter to the
cloud-native focus on scalability and fault tolerance. Transactions
are difficult in the first place, but when you begin spanning (long-
running) processes and geographies, it becomes a cost-prohibitive
approach.

The solution takes us back up to the software design. You want
single-responsibility services that might use a synchronous transac‐
tion internally, but don’t require cross-service transactions. This
often requires you to think of individual transactions, and asynchro‐
nously handing off to the next step. Your .NET web application

40 | Chapter 6: The New .NET Antipatterns

might call a service to charge the customer’s credit card, commit
that transaction, and then hand off to a service that queues the
product for shipping. Those two activities aren’t in a single dis‐
tributed transaction. They commit individually, but with safeguards
(e.g., retries, success indicators) to ensure that the overall order pro‐
cess completes.

API Calls That Require User Permission
If you use Windows, you’re painfully aware of those User Account
Control (UAC) notifications that pop up and ask you to confirm a
request for elevated access. This happens when software running on
behalf of a standard user wants to do something that requires
administrative permission. On the surface, that’s fine and a good
practice. For server-based software for which no one is there to
“approve” the request, though, it’s a killer to scalability and software-
run-by-software.

You’ll want to adopt a model in which services have necessary access
to host resources with whatever identity they operate under. Any‐
thing that requires administrator intervention is a no-no. Drop any
of that .NET code that requests UAC elevation, and ensure that the
app permissions are sufficient for anything that needs to be accessed
on the host machine or container.

Configuration and Instrumentation
Antipatterns
This group of antipatterns relates to how to store configuration data
and instrument your applications.

Using web.config for Environment-Specific Values
I have a confession. I used to love adding key/value pairs to my
ASP.NET web.config files. What an easy way to stash configuration
settings! I could change connection strings or feature flags without
recompiling the code. With a small enough web farm, I might even
change these values directly in production. What was a questionable
practice 10 years ago, however, is now an obvious no-no.

Putting any editable configuration values into the application pack‐
age limits manageability and introduces the risk of mismatched con‐
figurations among app instances. Anything deployed as part of the

Configuration and Instrumentation Antipatterns | 41

application should be versioned, and any changes should trigger a
new deployment. Changing anything manually in an environment is
a recipe for disaster. If you want the same immutable application
package as you deploy between environments, you need to external‐
ize the configuration. That means using environment variables—or
even better, an external configuration store—for any values that are
environment specific.

machineKey in the machine.config File
The machineKey is used in ASP.NET to protect Forms authentica‐
tion data and view-state data. Every server node in a farm needs the
same machineKey value. Traditionally, this value is managed via the
IIS Manager, and the generated key is stored in the server-wide
machine.config file.

When deploying .NET software to application platforms, you’ll want
to do something different. You might not have an IIS Manager expe‐
rience handy and want to scale in a cloud-native way. This means
overriding the machineKey value in the web.config file. This way, the
necessary value is part of the immutable application package and is
not dependent on anything on the host server.

Using the Windows Registry or Windows-Specific
Logging
The Windows Registry is a database that stores a hierarchy of set‐
tings. Windows itself uses the Windows Registry to store settings,
and many software packages plant values there. If you build soft‐
ware for Windows, you’re also familiar with writing information to
the Event Log. All of these represent something that’s convenient for
development, but a hindrance to scale and manageability.

If your code depends on the Windows Registry, you’ll have a more
difficult time porting the application to .NET Core. Obviously, the
Registry isn’t available on a Linux server. Although Windows Con‐
tainers do offer access to a locally scoped Windows Registry, this
database isn’t a versioned configuration store, and you shouldn’t use
it for important values.

If you write application information to the Windows Event Log,
you’re restricting your manageability. Today’s operators don’t want
to terminal into individual servers to scrape local logs. Rather, your

42 | Chapter 6: The New .NET Antipatterns

application should use libraries or platforms that ship logs to a cen‐
tral place. This improves your ability to troubleshoot problems
while ensuring that you don’t lose valuable data if a host goes away.

Application Dependencies and Deployment
Anti-Patterns
This final section reviews anti-patterns to avoid when bundling
applications and deploying them to each environment.

Global Assembly Cache Dependencies
The Global Assembly Cache (GAC) is a machine-wide collection of
assemblies. When you register an assembly in the GAC, it can be
used by any app on the server. Before an assembly can be registered,
it must be strong-named—that is, signed with a key. The point of
strong-naming is to create a unique name for the key and support
side-by-side versioning for a given assembly. The GAC was created
to eliminate DLL Hell—the classic case in which multiple apps break
when a shared component is updated.

Why does the GAC go against your cloud-native principles? A 12-
factor app declares its dependencies and includes what it needs to
run. You can’t assume anything exists on the target server. Any com‐
ponents needed by your application should be a part of your app.
Otherwise, you’re stuck with complex routines to prepare a server
before deploying an instance of your app. You can’t autoscale if that’s
the case!

Interactive Installations
You should use Windows Installers only when deploying to the
GAC, according to Microsoft. That’s typically an interactive deploy‐
ment in which an administrator clicks a wizard to choose installa‐
tion locations and deployment settings. You can have unattended
installations, but this is just one example of something that limits
you in your quest to become cloud native.

Avoid having any stage of software deployment require human
intervention. This means that your deployment environment can’t
run on anything with an interactive Windows Installer. No software
drivers, Windows Services, or Windows extensions that have an
installation wizard. Why? Because it means you can’t scale on

Application Dependencies and Deployment Anti-Patterns | 43

http://bit.ly/2EK0kAD

demand to system-generated environments. Cloud natives use auto‐
mated platforms to build identical environments and keep them up
to date. Ensure that everything your software depends on is bin
deployable, and ready to run immediately on any automation-
created server.

Summary
In this chapter, we reviewed a handful of antipatterns. Often, the
hardest part about using a new technology or paradigm is unlearn‐
ing what we’ve been doing for so long. If you’ve been doing the
items listed here, don’t feel bad. Many of these patterns were suitable
at one point. But now it’s time to evolve and adopt patterns that pro‐
mote scale, fault tolerance, changeability, and manageability.

Chapter 7 focuses on modern libraries and services that help you
modernize your .NET apps by introducing new cloud-native pat‐
terns to your code.

44 | Chapter 6: The New .NET Antipatterns

CHAPTER 7

New Components for Your
Modernized .NET Applications

Back in Chapter 1, we talked about those home improvement shows
on HGTV. Whenever one of the smiling participants hires an inte‐
rior decorator to fix up their home, a lot of “stuff ” leaves the house,
and lots of new “stuff ” finds its way in. The house isn’t gutted; key
pieces of furniture stay, and the structure isn’t dramatically altered.
But a fresh design warrants new pieces. The same goes for your
modernized .NET applications. When refactoring your software, it’s
an opportune time to freshen up your codebase with components
that reflect your new priorities. In this chapter, let’s look at what you
should consider adding to your modernized apps.

Open Source Data and Messaging Software
Changing your data platforms is scary. I get it. Your databases store
years of records and many applications have coalesced around them.
Whatever you use for integrating data—be it classic Enterprise Ser‐
vice Bus or commercial Extract, Transform, and Load (ETL) tools,
or both—likely forms an integral part of your enterprise architec‐
ture. You better have a good reason to swap out these technologies.

In many cases, you do have such a reason. For our modern .NET
apps, we’re prioritizing flexiblity, portability, and performance, not
to mention compatibility with the modern patterns we’re imple‐
menting. Let’s begin with database engines. Classic commercial
database platforms are still a good bet. They’re powerful and feature-

45

rich. They’re also expensive. As you consider patterns where you
have one database per microservice, that cost adds up. Also, you
want database engines that you can provision and manage via APIs,
thus making developer self-service and platform-managed software
a reality.

Consider a few alternatives. For relational workloads, you have a
variety of open source options. MySQL is one. Also, take a long look
at PostgreSQL. It’s a multiplatform, ACID-compliant engine that’s
proven at scale and quite extensible. PostgreSQL has all the familiar
relational database functionality you’d expect, including synchro‐
nous and asynchronous replication, indexes, schemas, stored proce‐
dures, and triggers. Besides drivers for .NET apps, PostsgreSQL
offers connectors for all other major languages.

As part of modernizing your .NET apps, you might be considering
some schemaless database engines. MongoDB is a document-
oriented database that you should consider. It has field indexing, a
rich query syntax, built-in data aggregation functionality, multido‐
cument ACID transactions, and high availablity through replica sets.
There’s solid .NET support via an official driver.

Redis is another one to look at. It’s a remarkably popular in-memory
key/value store that’s ideal for your caching needs. It has a scalable
replication strategy you can employ to scale reads or achieve data
redundancy. Like the other open source databases, Redis has a rich
set of supported and community-contributed language bindings.
Yes, including .NET.

Now, about your messaging systems. Your classic Enterprise Service
Bus (ESB) probably doesn’t have an expansive API for creating or
managing instances. Nor does it lend itself to “citizen integrators”
who can quickly deploy their own integrations. Odds are, you have a
team of specialists who keep these platforms healthy. Remember one
of our key objectives when modernizing our .NET apps: speed. This
means eliminating (or automating) anything that slows down the
delivery of valuable features to production. If you have to wait days,
weeks, or months to get integrations prioritized and shipped, you’ll
never achieve continuous delivery.

One way to wean yourself off the monolithic integration products is
by starting small. Maybe you deploy a lightweight messaging broker
for the microservices that power your software. You can introduce
something like NATS for lightning-fast, fire-and-forget routing

46 | Chapter 7: New Components for Your Modernized .NET Applications

between services. Or, use the battle-tested RabbitMQ for reliable
delivery of business data between your services or systems. And
consider event-processing engines like Apache Flink or Apache
Kafka when you want a durable, append-only log for your event
stream. Each of these technologies work well with .NET applications
and offers straightforward interfaces that every developer can use.

Cloud-Based Data and Messaging Services
I’d be remiss if I didn’t address the fact that many application mod‐
ernization efforts were sparked by the rapid embrace of the public
cloud. You just signed up to use a public cloud and want to avoid
just lifting and shifting software over to it. If you want all the good‐
ness of on-demand, scalable infrastructure, you need to make some
changes! Fortunately, each public cloud offers some pretty special
data services for your modernized .NET apps.

It’s easy to find managed relational databases in the public cloud.
Amazon Relational Database Service (Amazon RDS0 delivers man‐
aged instances of Microsoft SQL Server, MySQL, Oracle databases,
and PostgreSQL. Google Cloud SQL supports MySQL and Post‐
greSQL. Microsoft Azure gives you easy access to Microsoft SQL
Server, PostgreSQL, and MySQL. In each case, the cloud provider
handles provisioning, configuration, backups, and more. And
your .NET code “just works” with any of these because each data‐
base service supports its standard interface.

The standardization fades a bit when we look at NoSQL options in
the public cloud. This is an area where each provider is innovating
on its own, which means your code must be refactored to use it.
Amazon DynamoDB is a blazing-fast nonrelational database that
offers synchronous replication across regions and automates every‐
thing, including scaling. Azure Cosmos DB has intelligent global
replication and easy scaling built in. It also offers multiple types of
data models: SQL, MongoDB, Cassandra, Gremlin, and key/value.
Both Amazon DynamoDB and Azure Cosmos DB have standard
support for .NET apps via dedicated drivers.

If you want to do away with any care-and-feeding of messaging sys‐
tems, the public cloud has you covered. Amazon Web Services
(AWS) offers its SQS platform for basic, durable messaging. Google
Cloud has Pub/Sub, and Azure sells its Service Bus. In each case, the
engines have extremely high performance limits and simple .NET

Cloud-Based Data and Messaging Services | 47

interfaces to work with. For event stream processing, you have
options like Amazon Kinesis and Azure Event Hubs. One easy way
to get started with these is to make them the default choice when
you’re integrating cloud-hosted services.

Modern .NET Packages
How about your code itself? What should you change there when
refreshing your .NET software? There are many exceptional NuGet
packages to add, but I’ll focus on two that make a big impact: xUnit
and Steeltoe—xUnit because unit tests are the foundation of a suc‐
cessful delivery pipeline, and Steeltoe because it accelerates the
adoption of cloud-native patterns.

xUnit
To have confidence in your deployments, you must have confidence
in your code. To have confidence in your code, you must have confi‐
dence in your tests. xUnit is a unit testing framework for .NET
Framework and .NET Core. It was created by the gang behind
NUnit v2 and is part of the .NET Foundation.

Doing test-driven development can feel like a chore. “Let me just
write the code,” you might say. But if we’re trying to constantly ship
value to production, we can’t just hand off untested code to a testing
team. By thoughtfully designing declarative tests, we improve qual‐
ity and make it possible to continuously integrate, and even continu‐
ously deploy, software.

When writing tests with xUnit, you have two types of unit tests: facts
and theories. The xUnit authors say that “facts are tests which are
always true” and “theories are tests which are only true for a particu‐
lar set of data.” So for theories, your tests might pass or fail based on
the input data. With xUnit, you can run tests using the .NET Core
CLI (“dotnet test”) or even Visual Studio. And you can test your
code against multiple target platforms—say, .NET Framework 4.7
and .NET Core 2.1—on each run. There’s no doubt that it’s a real
investment to add tests to your code, but it’s one that’s honestly
worth the cost.

48 | Chapter 7: New Components for Your Modernized .NET Applications

http://bit.ly/2D5ZPPO

Steeltoe
Even though microservices are an exciting way to decompose sys‐
tems, they add complexity to your architecture. Where once there
was a static, predictable landscape, you now have a dynamic envi‐
ronment with more moving parts. Assuming that your app warrants
a microservices architecture, you’re going to want some help to sim‐
plify things. Enter Steeltoe.

Steeltoe is a set of libraries created by Pivotal to bring microservices
patterns to your .NET Framework and .NET Core applications. It’s
inspired by the vigorous microservices support in the ubiquitous
Spring Framework, also maintained by Pivotal. .NET apps powered
by Steeltoe can run on Windows or Linux, and on Pivotal Cloud
Foundry or any application host.

We take a closer look at Steeltoe in Chapter 9, when we apply it to a
few modernization recipes, but let’s first outline its core capabilities.

Configuration services
.NET Core introduced a new configuration provider model, and
Steeltoe takes advantage of that. .NET Core supports configuration
sources like command-line arguments, JSON files, and environment
variables. Steeltoe adds two more that work with .NET Framework
and .NET Core apps: Cloud Foundry and Spring Cloud Config
Server. The Cloud Foundry provider parses standard Cloud Foun‐
dry environment variables and makes them available to your .NET
app. Spring Cloud Config Server makes it easy to serve up configu‐
rations stored in Git repos, filesystems, or HashiCorp Vault. The
Steeltoe Config Server provider fetches those configurations and
makes it easy to access them in your .NET code.

Service discovery
So…where are my microservices? As you scale application instances
in and out, and have some healthy ones and some not, it’s critically
important to have fresh information about where to route a request.
Netflix Eureka offers an in-memory database of service locations
and responds only with healthy instances. The Steeltoe Discovery
client registers your service with the registry and sends occasional
heartbeats to the Eureka server to indicate healthiness. The Steeltoe
Discovery client also connects your app to the registry, caches the
information, and periodically updates its local cache. Your code

Modern .NET Packages | 49

refers to a service’s friendly name, and relies on the Steeltoe library
to exchange that friendly name for a route at runtime.

Circuit breaker
Using the circuit breaker pattern, you prevent hiccups in key serv‐
ices from cascading failure to the rest of the system. You do this by
shutting off traffic to the failing service, and providing fallback
behavior until that service returns to a healthy state. Steeltoe uses
Netflix Hystrix as its implementation. Calls to downstream services
are wrapped in a HystrixCommand, which works with a fixed thread
pool. If the pool is exhausted or too many downstream failures
occur, it trips the circuit and triggers a fallback operation. That
operation might return cached or static results until the Hystrix
component determines that the offending service is back online.

Management endpoints
Observability is a key demand for your modern .NET apps. When
something goes wrong, you need to be able to quickly diagnose it.
Steeltoe transparently (and optionally) adds a set of powerful man‐
agement endpoints to your .NET Framework or .NET Core applica‐
tion:

/health

Returns UP or DOWN information based on built-in health
contributors, or any custom ones you write.

/info

Returns Git information as well as any app configuration values
under the “info” key.

/loggers

Lets you view and change the log level for your .NET applica‐
tions.

/trace

Returns the last handful of requests to your app, with metadata
about the requestor.

/refresh

Triggers a reload of configuration values from configuration
sources.

50 | Chapter 7: New Components for Your Modernized .NET Applications

/env

Returns configuration values and keys that your app is using.

/mappings

Returns all the routes exposed by the application.

/metrics

Returns a wide range of CLR, HTTP client, and HTTP server
metrics for your app.

/dump

This is for Windows-only environments, and returns informa‐
tion about all the threads used by your application.

/heapdump

This is also Windows-only, and generates a mini-dump of your
application for later analysis.

/cloudfoundry

enables integration with the Pivotal Applications Manager UI in
Pivotal Cloud Foundry.

Service connectors
One of the 12-factor app criteria refers to bound services. To help
you discover and use bound services in a Cloud Foundry environ‐
ment, Steeltoe offers a handful of connectors. These connectors
parse the list of bound services for your .NET app, and provide
those connection details to your code. Steeltoe offers connectors for
MySQL, PostgreSQL, Microsoft SQL Server, RabbitMQ, Redis, and
OAuth.

Security
Steeltoe makes it simple to use Cloud Foundry’s OAuth2 security
services in your apps. The OAuth2 SSO provider lets you use the
credentials in a User Access and Authentication (UAA) server or
Pivotal single sign-on (SSO) service for authentication and authori‐
zation purposes. For accessing RESTful services, the Steeltoe JSON
Web Token (JWT) provider lets you secure access to endpoints.

You can use one or all of the previous capabilities in your modern‐
ized .NET apps. Each capability is represented as a NuGet package
and typically works with ASP.NET Core, ASP.NET (MVC, Web
Forms, WebAPI, WCF), and console applications.

Modern .NET Packages | 51

Continuous Integration and Continuous
Delivery Tools
What’s the most effective way to develop a sustainable path to pro‐
duction? Put your .NET apps on pipelines. This means automating
the key steps of integrating, packaging, and deploying software to its
target destination. If you do nothing else I’ve recommended in this
chapter, at least do this.

There’s no shortage of products in this space. There are continuous
integration tools like Jenkins, CircleCI, TeamCity, AWS CodePipe‐
line, and Visual Studio Team Services (VSTS) CI. I’m personally par‐
tial to Concourse, which offers declarative pipelines, stateless
execution environments (so no messy cleanup!), and an intuitive
dashboard. When doing continuous delivery, review products like
GoCD and Spinnaker, but also consider the CI tools just listed
because they’re capable of also deploying integrated packages.

Summary
When tasked with modernizing your apps, don’t miss this amazing
opportunity to actually improve your software. Consider introduc‐
ing new data services, code libraries, and deployment tools that
stand to deliver more resilient, scalable, change-friendly apps that
are sustainable for the next decade. Chapter 8takes a look at where to
run all this modernized .NET software.

52 | Chapter 7: New Components for Your Modernized .NET Applications

CHAPTER 8

Where to Run Your Modern .NET
Applications

Have you seen the television show Love It or List It on HGTV? The
premise is that two hosts compete to see whether they can get the
homeowners to renovate and stay in their house (“love it”) or fall in
love with a new house and sell their current one (“list it”). There are
plenty of times when the property owners find that their current
abode is still the best fit. But it’s not unusual for the new property to
win out. Your modernized .NET software might very well keep run‐
ning on its current host. However, I suspect that you’ll frequently
want to find it a new home. In this chapter, we look at some consid‐
erations for deciding where to run these modern .NET apps.

Choose Your Infrastructure Location
You might be tempted to boil down the infrastructure choice to
“public cloud” versus “private cloud.” But if you’re an enterprise
developer, there’s more to consider than that.

Consider the full spectrum of hosting options at your disposal. If
your company is like most, you’re choosing among infrastructure
that’s on-premises, colocated, run by an outsourcing or managed
service provider, or offered by one of many chosen public cloud
providers. And your system might span many of those! How do you
choose? Consider these six criteria:

53

Proximity to key systems and data sources
One of your first considerations? Where is my other stuff? For
example, if you’re modernizing a .NET web app with a tangled
dependency on a shared, on-premises database, targeting a pub‐
lic cloud might be a mistake. You’d want your app and its data‐
base to be close to each other. And what if your system expected
all components to be on the same network and your public
cloud VLAN couldn’t stretch to accommodate? That’s a red flag.
When modernizing .NET apps, think carefully about how to
move the apps and their dependencies as a package.

Expected consumption and traffic patterns
What are the general expectations of resource usage and activity
of the app? For apps with steady, predictable usage, the public
cloud could be more costly and less attractive. Or if you have
the need for petabytes of attached storage, it makes sense to use
on-premises or colocated infrastructure where you can create
massive storage volumes. Unpredictable usage is often where
the cloud shines. It’s easy to scale up and down, and the seem‐
ingly limitless upper bound keeps your app online under nearly
every circumstance. Consider what your app is likely to experi‐
ence, and decide accordingly.

Dev team makeup and skill
Who exactly is building or modernizing your .NET apps? For
experienced teams that want to build and run their own soft‐
ware, a true cloud model is ideal. All that self-service and API-
centric automation caters to that crowd. If you’re not investing a
lot in deployment pipelines and infrastructure automation, you
might find a managed hosting provider a safer choice. Even
though I do believe that your technology choices can trigger a
positive change in culture and behavior, I’d also recommend
carefully considering your current skill set before choosing a
technology for your team.

Who is operating the software?
Do you have very distinct build, deploy, and run stages at your
company? If so, that will affect where you choose to run
your .NET software. If a separate team operates most of your
company’s software, you’re likely using whatever they offer up
in their service catalog. Conversely, if you know that your team
is on the hook to build and run your software, you’ll probably

54 | Chapter 8: Where to Run Your Modern .NET Applications

choose a host that favors self-service and software-driven opera‐
tions.

Application maturity
I think we forget about this one too often. When you’re experi‐
menting, you prioritize fast feedback, and often do not worry
about choosing proprietary technology. Why create the perfect,
portable architecture if you don’t even know whether the idea is
legitimate? Depending on where your app is in its life cycle, that
can affect where you run it. Some companies have used a public
cloud for shiny new apps in order to measure application traffic
patterns, and then eventually moved the app to a cheaper pri‐
vate or hosted environment after they could confidently predict
consumption. Or maybe applications that are nearing their end
of life get some light refactoring and shoved into a high-density
public cloud environment. Although I don’t believe that any‐
one’s constantly moving apps between infrastructure hosts, over
the 10 to 15 years that software is useful, you can bet that it
slides around.

Strategic relationships and existing investments
You can’t ignore your current investments when embarking on a
modernization project. If your company is all in on Google
Cloud, you’re heavily incentivized to run the updated apps
there. If you have a multiyear outsourcing agreement, there’s
heavy pressure to utilize that. And if you have nothing but Win‐
dows Server environments (and skills!) in house, it’s unlikely
you’ll replatform onto .NET Core on Linux.

Any one of these—or another criterion entirely—can become a
deciding factor. But it’s rarely a black-and-white decision, as your
company’s context plays a major role in what infrastructure hosts
your modernized .NET application.

Choose Your Infrastructure Abstraction
Choosing where you run software is different than choosing how
you run software. And your choice of runtime abstraction might
actually help determine your infrastructure location, based on what
each location supports. Let’s look at each runtime abstraction, what
it offers you, what you take responsiblity for, and what you should
run there.

Choose Your Infrastructure Abstraction | 55

Hardware Abstraction
Without fail, all your software is running on physical hardware. You
might be using virtualized layers on top, but hardware is still at the
foundation. What do we get when we directly use physical hardware
to run our software? Bare-metal machines provide predictable cost
and performance. You pay a certain amount for the hardware, and
there’s no variable cost based on how you use it. And because you
don’t have virtualized workloads competing for resources, your soft‐
ware has access to whatever is available on the server.

So what’s your responsibility when using physical hardware to run
software? A lot. It’s up to you to secure and isolate the machines as
necessary. You need to install and manage the operating system and
any application middleware. If you need additional capacity, it’s on
you to order and install it. And, of course, you must actually deploy,
configure, and operate your software.

There’s definitely a class of workload that makes sense to run on
bare-metal hardware. Consider software that requires consistent
performance and demands physical isolation from others. It’s also a
good fit when you have substantial compute and local storage
demands that can’t be met by virtualized infrastructure. You might
still have a handful of commercial software packages that aren’t sup‐
ported in virtualized environments and require dedicated hardware.
As we discussed earlier, since everything requires a bare-metal foun‐
dation, you’ll use physical servers to run virtualization platforms.

Infrastructure as a Service Abstraction
This is the abstraction that caused cloud computing to really take
off. All of a sudden, Infrastructure as a Service (IaaS) lets you get
your own virtual machines anywhere in the world. Amazing! What
do you get from this infrastructure abstraction? You get on-demand
access to compute. No more long waits to order hardware, rack and
stack it, and install an operating system. IaaS also offers elasticity
where you can scale individual machines up or down, manually or
automatically. This is all made possible by robust APIs that allow
unattended, bulk interactions with virtual infrastructure. Finally,
IaaS gives you a strong security boundary for colocated workloads
that share a physical host or network. You’ll find IaaS options from a
wide range of public providers as well as on-premises options from
VMware and OpenStack distributors.

56 | Chapter 8: Where to Run Your Modern .NET Applications

I’ve observed that many companies rely on IaaS to run their com‐
mercial and custom software. One reason for that is that it’s a com‐
fortable transition from how we’ve traditionally hosted our software.
The experience inside an IaaS-provisioned virtual machine is practi‐
cally identical to a physical host. It’s still your responsibility to man‐
age the operating system, connect machinery together—think load
balancing, clusters—and configure the application host. Even
though IaaS makes it dramatically easier to acquire infrastructure, it
doesn’t fundamentally change the experience of deploying or run‐
ning your software. To be sure, there are improvements to the soft‐
ware experience as a result of all the automation and APIs, but you
haven’t changed your base responsibilities.

IaaS makes for plenty of workloads. It’s traditionally been the only
place to run Windows-based software. Windows Server support has
been slow to arrive to other infrastructure abstractions. It’s also suit‐
able for workloads that require preinstalled drivers or operating sys‐
tem configurations. That often applies to virtualized network
appliances or commercial software packages. IaaS is also a fit when
you’re doing lift-and-shift migrations of commercial or custom soft‐
ware running on physical hardware or virtualized environments
without automation. And, of course, IaaS forms the foundation of
most application platforms that provide higher-level software
abstractions.

Container as a Service Abstraction
Container as a Service (CaaS) options arose just as containers
became a default packaging unit for modern software. Developers
use this abstraction because of its sophistication running container‐
ized workloads. You get smart resource management, scheduling of
containers, rapid scaling, and support for both stateful or stateless
workloads. Although Kubernetes is seemingly everywhere, there are
other legitimate CaaS offerings from Mesosphere, Docker, Hashi‐
Corp, and others. CaaS experiences are available in the public cloud
via managed services like AWS Elastic Container Service (ECS), or
in public/private clouds via software like Pivotal Container Service
(PKS). Most container platforms are only for Linux-based work‐
loads, but Microsoft’s Service Fabric caters specifically to Windows
workloads. And with the introduction of Windows Server Contain‐
ers, I expect you’ll see future Windows support in the other popular
CaaS products, too.

Choose Your Infrastructure Abstraction | 57

If you’re investing in a CaaS, you’ve got certain responsibilities for
running your .NET software. It’s on you to manage a secure, patched
set of base images. Your software gets merged with a parent con‐
tainer image, so it’s critical that you use a trusted registry. Other
responsibilities include adding log aggregation and app monitoring,
given that most CaaS platforms focus on the infrastructure, not any
app-specific considerations. Depending on which CaaS you use, you
also might need to figure out how to isolate tenants (beyond using
constructs like Kubernetes namespaces). And, because software like
Kubernetes is updated at least quarterly, it’s your responsibility to
have a strategy to roll out infrastructure updates.

What should you run in your CaaS environment? Some people
answer with “everything!” I don’t. To be sure, it’s a great runtime for
short-lived workloads. Containers are amazing for quick startup and
scaling. CaaS is also ideal for software that’s prepackaged into con‐
tainers by vendors, or delivered through the Helm package manager.
CaaS is useful for stateful or stateless legacy apps that you don’t want
to make changes to before stuffing into a high-density runtime. And
sure, you also can run Linux-based, custom-built cloud-native soft‐
ware there, if you prefer to operate it at the container level. Given
how useful orchestrators like Kubernetes are for infrastructure serv‐
ices, I’m infatuated with CaaS as a runtime for platforms more than
apps—things like database platforms, event stream–processing plat‐
forms, and closely coordinated services that make up your own plat‐
form.

Platform as a Service Abstraction
The concept of Platform as a Service (PaaS) has been around almost
as long as IaaS. In those early days, PaaS was billed as an on-
demand, application-centric runtime that hid from you all of the
infrastructure complexity. That sounds great! And it was for many
developers, but there were limits to those early platforms. They ran
only in the public cloud. You had to build apps with functional and
resource limitations in mind. HTTP was the only routing option.
And the runtime was a black box. Some of today’s cloud-native
application platforms do so much more. Take Pivotal Cloud Foun‐
dry (PCF), for instance. You can completely deploy a routable app
with a single command and easily scale it. But you can also run the
platform on any infrastructure, perform TCP-based routing, deploy
containers or source code, and SSH into running instances. A qual‐

58 | Chapter 8: Where to Run Your Modern .NET Applications

ity PaaS platform also runs stateful or stateless apps, hosts web apps
or background jobs, aggregates application logs, and offers a catalog
of backing services. All of that comes together to make ongoing app
operations simpler.

What’s left for you to do? In a PaaS, you still define application ten‐
ant boundaries—think “orgs” and “spaces” in a PCF environment.
It’s also your responsibility to define policies for user permissions
and autoscaling. And, of course, you still need to deploy code or tar‐
get your continuously integrated/continuously delivered (CI/CD)
process at the PaaS endpoint. Once that code is running, it’s on you
to manage the application, which could mean scaling it, adding new
routes, and troubleshooting issues. If you’re running a software-
based PaaS like PCF (versus a fully cloud-hosted platform), your
team will also operate the platform itself. Fortunately, platforms like
PCF come with significant automation capabilities that make it
straightforward to operate with a handful of engineers.

So what workloads run in a PaaS? As with CaaS, you could answer
“everything!” and I’d disagree. PaaS should be your starting point for
most custom-built software. If it can’t run there, look for the next
abstraction down the stack. You might think, however, that PaaS is
just good for web apps. But in reality, it’s also a good runtime for
batch jobs, streaming data pipelines, and private APIs. And you’ll
actually find a handful of PaaSes (like PCF or Microsoft Azure’s App
Service) that have Windows Server support.

Function as a Service Abstraction
How you can have even less responsibility for application infrastruc‐
ture? Use a Function as a Service (FaaS) platform, often synonymous
with serverless computing. These services offer a scale-to-zero, pay-
for-consumption model that’s attractive to developers. Additionally,
all FaaS environments offer built-in scaling, so you don’t ever need
to bother with scaling the function up or down. It’s also common to
see FaaS products that offer easy integration with cloud services.
These cloud services might trigger a function, or be on the receiving
end of a function. Some folks are already building complex systems
on a FaaS, whereas others are doing simpler but also powerful data
change synchronizations, real-time analytics, mobile notifications,
and even serving up single-page apps. Today these platforms are
almost exclusively in the public cloud, but some new software-based

Choose Your Infrastructure Abstraction | 59

platforms are cropping up. Keep an eye on offerings like Pivotal
Function Service for a functions-anywhere approach.

One thing to keep in mind here is that FaaS is for new software. I’m
fairly confident that you don’t have any software today that lifts and
shifts to a FaaS. The free ride is over. Unlike previous computing
paradigms that supported a straightforward migration—consider
when you moved software from hardware to VMs, or many apps
directly to PaaS or CaaS—FaaS represents a new way of thinking.
For FaaS, you’re writing tightly scoped, event-driven software that
conforms to the boundaries of the FaaS. Decomposing an existing
app into a set of functions is far from impossible, but it’s definitely a
major refactoring.

Summary
It’s fairly likely that your infrastructure location and abstraction will
undergo changes when you modernize your .NET apps. That’s natu‐
ral. If you build great .NET software with a solid architecture, your
infrastructure choices don’t need to be made up front. Rather, you
might make these choices after you’ve started your application
development. And that’s okay. With the exception of functions, these
infrastructure options shouldn’t exert much influence on your
upfront design. In Chapter 9, we look at a handful of modernization
recipes that you can use regardless of where your software runs.

60 | Chapter 8: Where to Run Your Modern .NET Applications

CHAPTER 9

Applying Proven Modernization
Recipes

Building software is inherently a creative task. In past years, busi‐
nesses thought they could build “software factories” in which inter‐
changeable people churned out lines of code. That era is thankfully
ending, as wise leaders recognize that well-designed, smartly con‐
structed software is a business differentiator. That said, there are
software patterns we can follow over and over again to accomplish
foundational goals while not diminishing the overall creativity of the
software delivery process. In this chapter, we look at five patterns, or
recipes, for modernizing your software. By implementing these, you
can accomplish many of your cloud-native goals and still maintain
the freedom to innovate.

Use Event Storming to Decompose Your
Monolith
You have a million-line-of-.NET-code behemoth that runs your
business. The thought of deploying an update to this monster makes
you break out into a cold sweat. It’s chewed up and spit out any
developer that tried to make improvements. Today is the day that
you slay this foul beast. But how? How do you even begin to tear this
creature apart and get it under control? Event storming is one effec‐
tive approach.

61

Created by Alberto Brandolini, event storming is a technique for
creating a domain model. When you’re finished, you’ll better under‐
stand what the software does and how to tackle decomposition.

Event storming is usually done in a workshop with a small group—
perhaps 5 to 10 people made up of technical and line-of-business
staff. It’s led by someone who understands domain-driven-design
(DDD). You’ll need some office supplies, namely a large surface to
write on (often a giant sheet of paper or wall-sized whiteboard),
markers, and different colored sticky notes.

You begin by having everyone write down meaningful things that
happen in the business domain. Record those domain events on one
color of sticky note, like orange. Domain events are things like
“money withdrawn,” “user registered,” or “order canceled.” Next, you
identify the cause of a given event. If that cause is a command or
trigger, like “register user,” it’s written on a blue sticky note and
placed next to the event. If one event causes another event, place
those events next to each other. And if the cause of an event is time
itself—for example, consider an event like “cart expired”—you add a
note indicating “time.” Figure 9-1 shows how this process might
look.

Figure 9-1. Team doing an event storming workshop with Pivotal

Next up, you identify aggregates that take in commands and result in
events, and start grouping aggregates into what’s called a bounded
context. You end up with a behavioral model that drives widespread
understanding of the problem space. Developers can take this model
and potentially define microservices for a given bounded context. In
this manner, you can begin to identify slices of your .NET monolith
that you can carve out and rebuild, piece by piece.

62 | Chapter 9: Applying Proven Modernization Recipes

http://bit.ly/2D6BnOm
http://bit.ly/2CIuuBN
http://bit.ly/2CIuuBN

Externalize Your Configuration
When I had configuration data for my .NET apps, I typically stored
it in keys within my web.config file. Oh, how wrong I was. As we dis‐
cussed earlier, having any configuration values in your .NET project
itself means that you need to change the package as it moves
between environments and make any production changes by start‐
ing back at the source code. Not good. This recipe looks at how you
externalize your configuration into remote config stores, by using
Steeltoe libraries that talk to a Spring Cloud Config Server.

To begin, go to http://start.spring.io. From here, you can create the
scaffolding for Spring Boot projects. Provide a group ID, artifact ID,
and name for your project. Next, select the Config Server package
(see Figure 9-2).

Figure 9-2. Creating the scaffolding for Spring Boot projects at
start.spring.io

Download the resulting package. After ensuring that you have a cur‐
rent version of Java on your machine, open this Spring Boot project
in your favorite code editor. Eclipse, Atom, and Visual Studio Code
all have integration with Spring Tools for easier development.

There’s only a single line of code you need to write, thanks to Spring
Boot. Open the *.java file in the src/main/java directory, and add the
@EnableConfigServer annotation above the @SpringBootApplica
tion annotation, as shown in Figure 9-3.

Externalize Your Configuration | 63

http://start.spring.io

Figure 9-3. Enabling the Spring Cloud Config Server in Spring Boot
code

The Spring Cloud Config Server can pull configuration values from
a local filesystem, SVN repository, database, Git repository, or
HashiCorp Vault backend. Powerful stuff. The Spring Cloud Config
Server combines all the relevant configurations it finds into one
bucket for your application to access. In the example repo that we’re
using here, there are three configuration files. One of them is book‐
demos.properties, which contains the following entries:

#greeting
greeting=Hello, O'Reilly book readers!

#logging toggles
loglevel=info

server.port=8888

spring.cloud.config.server.git.uri=/
 https://github.com/rseroter/book-demo-configs

That completes the Config Server setup. Start the Java project so that
the server loads all the configuration files and is ready to serve them
to requesting applications, as demonstrated in Figure 9-4.

64 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-4. Configuring and starting up your Spring Cloud Config
Server

Suppose that you have a .NET Framework console app in which you
store the configuration values as static variables. You want to replat‐
form that app to .NET Core, and refactor it to grab configuration
values from the Spring Cloud Config Server.

With the latest .NET Core SDK installed, go to a command prompt,
create a project directory, and run dotnet new console in that
directory. Add the following packages by typing dotnet add pack
age [fill in the package]:

• Microsoft.Extensions.Configuration to build up the config‐
uration objects in code.

• Microsoft.Extensions.Configuration.FileExtensions helps
us read from the filesystem to get the location of the Config
Server.

• Microsoft.Extensions.Configuration.Json helps read the
JSON config file on the filesystem.

• Steeltoe.Extensions.Configuration.ConfigServerCore

pulls in the Steeltoe Config Server client.

Externalize Your Configuration | 65

Next, add an appsettings.json file to the console project. This file
points your app to the Config Server and provides a “name,” which
helps the Config Server client read the correct configuration files.
The application name typically maps to the name of the configura‐
tion files themselves:

{
 "Logging": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "AllowedHosts": "*",
 "spring": {
 "application": {
 "name": "bookdemo"
 },
 "cloud": {
 "config": {
 "uri": "http://localhost:8888"
 }
 }
 }
}

Finally, we have our .NET code. Add the following using statements
to the Program.cs file:

using System.IO;
using Steeltoe.Extensions.Configuration.ConfigServer;
using Microsoft.Extensions.Configuration;

static void Main(string[] args){
 //retrieve local configurations, and those from the config
 //server
 var builder = new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .AddConfigServer();
 var configuration = builder.Build();

 string logLevel = configuration["loglevel"];

 Console.WriteLine("value from config is: " + logLevel);
 Console.ReadLine();
}

When you run the application, you see that this .NET Core console
application now reads configurations from a remote store, as illus‐
trated in Figure 9-5.

66 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-5. Reading configurations from a remote store

You’ll also probably use this pattern with ASP.NET and ASP.NET
Core web applications, so be sure to read the official Steeltoe docu‐
mentation for the instructions. And, if you’re a Cloud Foundry user,
Steeltoe pulls any Config Store connection info directly from the
environment. No local config settings needed!

Introduce a Remote Session Store
By default, ASP.NET apps use an in-memory session state provider.
You designate that in the web.config file:

<sessionState mode="InProc"
 customProvider="DefaultSessionProvider">
 <providers>
 <add name="DefaultSessionProvider"
 type="System.Web.Providers.DefaultSessionStateProvider,
 System.Web.Providers, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" connectionStringName
 ="DefaultConnection" />
 </providers>
</sessionState>

However, that’s not a cloud-native approach. Any loss of host results
in lost session data. We want a highly available, remote session store.
This recipe looks at how to refactor your web apps to use Redis as
that store. Let’s assume you have some code like the following that
stores a timestamp in ASP.NET session state:

string timestamp = Session["timestamp"] as string;

Introduce a Remote Session Store | 67

http://steeltoe.io/docs
http://steeltoe.io/docs

lblmsg.Text = "timestamp is: " + timestamp;

if (timestamp == null)
{
 timestamp = DateTime.Now.ToString();
 Session["timestamp"] = timestamp;
}

Begin by getting Redis running on your machine. You have multiple
options here. Redis runs on Unix-based or Windows machines. You
can also pull a Docker image instead of installing Redis yourself.
Since I’m working with a “classic” Windows app, I used the Chocola‐
tey package manage to install Redis on a Windows Server 2012 R2
machine (Figure 9-6).

Figure 9-6. Running Redis on Windows Server

Back in our ASP.NET code, add a new NuGet package. Find Micro‐
soft.Web.RedisSessionStateProvider (Figure 9-7). I chose version
2.2.6.

68 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-7. Installing a NuGet package

After the package is installed, a new section is automatically added
to our web.config file. Comment out the previous InProc and session
state provider and then configure the Redis one. Then, provide the
host port, and any other values specific to your Redis installation:

<sessionState mode="Custom"
 customProvider="MySessionStateStore">
 <providers>
 <add name="MySessionStateStore"
 type="Microsoft.Web.Redis.RedisSessionStateProvider"
 host="127.0.0.1" port="6379" accessKey="" ssl="true"
 />
 </providers>
</sessionState>

Start the ASP.NET application; you’ll see that the timestamp values
are stored and retrieved from our Redis-based session state. Stop‐
ping and starting your application doesn’t “purge” the session state,
because it’s stored in Redis instead of in memory. Querying the
“KEYS” of the Redis instance shows the session information for the
connected clients (see Figure 9-8).

Introduce a Remote Session Store | 69

Figure 9-8. Querying session information stored in Redis

Move to Token-Based Security Schemes
One of the stickier issues when you’re considering a replatforming
and migration of ASP.NET applications is security—specifically,
untangling Integrated Windows Authentication from your code. As
we saw earlier, using this scheme is an antipattern because it’s not
cross-platform or particularly friendly to other programming lan‐
guages. A more cloud-native option would be OpenID Connect. In
this recipe, we remove the Integrated Windows Authentication from
our app, and replace it with OpenID Connect.

For example purposes, I created a new ASP.NET Web Forms app
(Figure 9-9) with Integrated Windows Authentication enabled. This
represents our “classic” app infested with bad practices.

70 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-9. ASP.NET Web Forms app with Integrated Windows
Authentication enabled

When creating or reviewing a project that uses Windows Authenti‐
cation, you’ll see something like this in your web.config file:

<authentication mode="Windows" />
<authorization>
 <deny users="?" />
</authorization>

Your Windows-infused code has operations annotated with Author
ize or PrincipalPermission statements, or checks to see if the user
is in a particular role. This takes advantage of the .NET identity sys‐
tem. With Integrated Windows Authentication and the IIS web
server, a user’s roles are typically populated by Active Directory.
Here’s my Default.aspx.cs file.

protected void Page_Load(object sender, EventArgs e)
{
 //pull user name
 string username = User.Identity.Name;

 //check roles within a c# method
 bool rolecheck = User.IsInRole("WebAdmins");

 //variable that holds value from protected call

Move to Token-Based Security Schemes | 71

 string result = String.Empty;

 //call "protected" operation
 try
 {
 result = GetSecureData();
 }
 catch(System.Security.SecurityException ex)
 {
 result = ex.Message;
 }

 //print results
 lblMessage.Text = String.Format(@"The username is {0},
 it is {1} that they are a WebAdmin, and result of protected
 call is {2}",
 username,
 rolecheck.ToString(),
 result);
}

[PrincipalPermission(SecurityAction.Demand, Role="WebAdmins")]
private string GetSecureData()
{
 return "super secret info!";
}

In this recipe, we use Azure Active Directory (Azure AD) to expose
an OpenID Connect (OIDC) endpoint for authentication. Then, we
refactor our code to use OIDC and still retain the functionality we
had previously. Note that you can perform variations of this pattern
using Active Directory Federation Services, or identity services like
Okta or Auth0. You can also swap in Pivotal’s Single Sign-On (SSO)
tile and Steeltoe’s identity libraries for the custom code I use next.
But here, I wanted to demonstrate a vanilla recipe that you could
easily try yourself.

Provision an Azure AD instance in the public cloud, as demon‐
strated in Figure 9-10. This is a fairly straightforward process and
can fit within its free usage tier.

72 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-10. Provisioning an Azure AD instance

Using the “app registrations” section of Azure AD, register a new
application with a callback URL to your application (Figure 9-11).
Note that my URL maps to the localhost instance I’m using in this
recipe.

Figure 9-11. Registering a new application with a callback URL

After creating the registered app, you can see values like the applica‐
tion ID and object ID. The application ID maps to the client ID in
the OAuth world, so save that value for future use. We have a couple

Move to Token-Based Security Schemes | 73

key configurations to set in Azure AD before switching to code.
First, under Settings, we set the Reply URLs. This value instructs
Azure AD where to redirect the client and also helps verify that the
source and destination domain are the same. Figure 9-12 shows that
the value I set equaled my primary site URL.

Figure 9-12. Setting key configurations in Azure AD

Back on the starting page of the registered app, you’ll find a button
labeled “manifest.” Here, we can view and edit the identity configu‐
ration, including the setting to return the “groups” associated with
the user. I changed the groupMembershipClaims to “SecurityGroup”
so that I had access to these claims after signing in from my
ASP.NET application.

Finally, to demonstrate that group/role functionality, I returned to
the Azure AD instance and added multiple groups, and added my
user to each of them (Figure 9-13). Be aware that each group has an
object ID (represented as a GUID), and that’s the value returned to
the client as a claim ID.

74 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-13. Adding groups to an Azure ID instance

Next up in the recipe is refactoring our code. First, I added three
NuGet packages to my project:

• Microsoft.Owin.Security.OpenIdConnect

• Microsoft.Owin.Security.Cookies

• Microsoft.Owin.Host.SystemWeb

These packages bring in the necessary Open Web Interface for .NET
(OWIN) middleware components for doing cookie-based SSO.

Before adding code, we update our configuration with some applica‐
tion settings. Specifically, we’re adding keys used by our code to
redirect to Azure AD. In the web.config, add the following:

<appSettings>
 <add key="ClientId"
 value="[app id from registered app]" />
 <add key="Tenant"
 value="[name of tenant].onmicrosoft.com" />
 <add key="AzureADInstance"
 value="https://login.microsoftonline.com/{0}" />
 <add key="PostLogoutRedirectUri"
 value="http://localhost:55585" />
</appSettings>

That uses the application ID from our Azure AD–registered applica‐
tion, our tenant name, and the redirection URL, which should map
to the reply URL we set up in Azure AD. Given our previous pat‐

Move to Token-Based Security Schemes | 75

tern, you could also use a Config Store to stash and retrieve these
values.

Next, we need to add a Startup.cs class that configures all the
OpenID Connect authentication. Right-click the project folder,
choose “Add” and select “OWIN Startup class.” Name the class
Startup.cs. There are four “using” statements automatically added at
the top, and introduce these eight additional ones.

using System;
using System.Threading.Tasks;
using Microsoft.Owin;
using Owin;
//added
using System.Configuration;
using System.Globalization;
using Microsoft.Owin.Security;
using Microsoft.Owin.Security.Cookies;
using Microsoft.Owin.Security.OpenIdConnect;
using Microsoft.Owin.Security.Notifications;
using Microsoft.IdentityModel.Protocols.OpenIdConnect;
using Microsoft.IdentityModel.Tokens;

At the top of the Startup.cs class, we define variables that pull con‐
figuration values from the web.config file:

private static string clientId =
 ConfigurationManager.AppSettings["ClientId"];
private static string aadInstance =
 ConfigurationManager.AppSettings["AzureADInstance"];
private static string tenant =
 ConfigurationManager.AppSettings["Tenant"];
private static string postLogoutRedirectUri =
 ConfigurationManager.AppSettings["PostLogoutRedirectUri"];

string authority = String.Format(CultureInfo.InvariantCulture,
 aadInstance,
 tenant);

The heart of this class is the Configuration operation, which trig‐
gers a cookie-based authentication:

public void Configuration(IAppBuilder app)
{
 app.SetDefaultSignInAsAuthenticationType(
 CookieAuthenticationDefaults.AuthenticationType);
 app.UseCookieAuthentication(new CookieAuthenticationOptions());

 app.UseOpenIdConnectAuthentication(
 new OpenIdConnectAuthenticationOptions{
 ClientId = clientId,

76 | Chapter 9: Applying Proven Modernization Recipes

 Authority = authority,
 PostLogoutRedirectUri = postLogoutRedirectUri,
 RedirectUri = postLogoutRedirectUri,
 ResponseType = OpenIdConnectResponseType.IdToken,
 Notifications =
 new OpenIdConnectAuthenticationNotifications
 {
 AuthenticationFailed = context =>
 {
 context.HandleResponse();
 context.Response.Redirect(
 "/Error?message=" + context.Exception.Message);
 return Task.FromResult(0);
 }
 }
 }
);
}

How do we initiate the login event? Let’s add an explicit login com‐
mand to our application. In the Site.Master definition, add a Login
View to the top menu. I placed it after the tag that defined the
navigation menu:

<asp:LoginView runat="server" ViewStateMode="Disabled">
 <AnonymousTemplate>
 <ul class="nav navbar-nav navbar-right">

 <a
 href="Site.Master"
 runat="server"
 onserverclick="btnLogin_Click">Login

 </AnonymousTemplate>
 <LoggedInTemplate>
 <ul class="nav navbar-nav navbar-right">

 <asp:LoginStatus runat="server"
 LogoutAction="Redirect"
 LogoutText="Logout"
 LogoutPageUrl="~/"
 OnLoggingOut="Unnamed_LoggingOut" />
 </li

 </LoggedInTemplate>
</asp:LoginView>

In the codebehind of the Site.Master, I added four using declara‐
tions:

Move to Token-Based Security Schemes | 77

//added
using Microsoft.Owin.Security;
using Microsoft.Owin.Security.OpenIdConnect;
using System.Web.Security;
using Microsoft.Owin.Security.Cookies;

Then, I added functions for the login and logout command. Notice
that the login command triggers an authentication request:

protected void btnLogin_Click(object sender, EventArgs e)
{
 if (!Request.IsAuthenticated)
 {
 HttpContext.Current.GetOwinContext().Authentication
 .Challenge(
 new AuthenticationProperties { RedirectUri = "/" },
 OpenIdConnectAuthenticationDefaults.AuthenticationType);
 }
}

protected void Unnamed_LoggingOut(
 object sender, LoginCancelEventArgs e)
{
 Context.GetOwinContext().Authentication.SignOut(
 CookieAuthenticationDefaults.AuthenticationType);
}

The final step? Refactoring that Default.aspx.cs code that checks user
roles. First I updated the “secured” operation to no longer demand a
role, but still demand an authenticated user:

[PrincipalPermission(SecurityAction.Demand)]
private string GetSecureData()
{
 return "super secret info!";
}

Next, to do security checks, I added three using statements at the
top of the class:

//added for OIDC
using Microsoft.Owin.Security;
using Microsoft.Owin.Security.OpenIdConnect;
using System.Security.Claims;

Then, I changed the code that looked up the username, looked up
user roles, and called the secure function. Notice that while we get
the user’s group assignments as claims, we don’t automatically get
the friendly name. You could use another Azure AD API lookup to
translate it, if needed:

78 | Chapter 9: Applying Proven Modernization Recipes

string username = User.Identity.Name;
//using object ID, as we don't get the friendly name in the claim
const string bookGroup = "2c4e035e-9aba-4ea9-be4b-fc67bd762242";
string rolestatus = "no";
string result = String.Empty;
var userClaims =
 User.Identity as System.Security.Claims.ClaimsIdentity;

//look for claim associated with the desired user role
Claim groupDevTestClaim = userClaims.Claims.FirstOrDefault(
 c => c.Type == "groups" &&
 c.Value.Equals(
 bookGroup,
 StringComparison.CurrentCultureIgnoreCase));

if (null != groupDevTestClaim)
{
 rolestatus = "yes";
}

try
{
 result = GetSecureData();
}
catch (System.Security.SecurityException ex)
{
 result = ex.Message;
}

//print results
lblMessage.Text = String.Format@(
 "The username is {0}, {1} they are a book author,
 and result of protected call is {2}",
 username,
 rolestatus,
 result);

Don’t forget to “turn off ” Windows Authentication in your web.con‐
fig file. Simply switch authenticationMode to None and delete the
authorization block.

With that, the ASP.NET application is refactored to use a cross-
platform, non-Windows-specific way to authenticate and authorize
users. When starting up the application and clicking login, I’m
immediately redirected to log in, as shown in Figure 9-14.

Move to Token-Based Security Schemes | 79

Figure 9-14. Being redirected to log in

After logging in, I’m redirected to the application, and my code exe‐
cutes to confirm that I’m logged in and authorized, as depicted in
Figure 9-15.

Figure 9-15. Confirming login and authorization

80 | Chapter 9: Applying Proven Modernization Recipes

Put .NET Core Apps on Pipelines
If you do nothing else that I recommended in this book, do this. By
putting your apps on pipelines, you set yourself up for a repeatable
path to production. This recipe walks you through the necessary
steps to put an ASP.NET Core app on a Concourse pipeline that
deploys the app to Pivotal Cloud Foundry. Even if your destination
is somewhere else or you’re using the .NET Framework, this pattern
should be useful.

Concourse is a declarative, pipeline-oriented CI/CD system. It uses
the concepts of resources, jobs, and steps. Resources are the things
you’ll use in your pipeline. A resource might be a Git repo or an
Azure Blob Storage account. Jobs determine what your pipeline
actually does. They explain how the resources pass through the
pipeline and how you visualize the flow. A job is made up of steps.
Each step may grab a resource or execute a low-level task. Tasks exe‐
cute in ephemeral containers, so when a pipeline is finished, there’s
no mess to clean up.

A complete .NET Core pipeline should: fetch source code; run tests,
including unit, integration, smoke, and performance tests; and then
deploy the software. That deployment phase consists of generating a
build artifact and pushing that artifact to the target environment.

In this recipe, we build a basic pipeline that runs unit tests and pub‐
lishes the result to Cloud Foundry. We begin with an ASP.NET Core
application that has some xUnit test baked in. My TestClass.cs file
defines a couple of basic unit tests against a simple web controller
(ValuesController), as shown in Figure 9-16:

using Xunit;
using tested_core_app.Controllers;

namespace unittests {
 public class TestClass {
 private ValuesController _vc;

 public TestClass() {
 _vc = new ValuesController();
 }

 [Fact]
 public void Test1(){
 Assert.Equal("pivotal", _vc.Get(1));
 }

Put .NET Core Apps on Pipelines | 81

 [Theory]
 [InlineData(1)]
 [InlineData(3)]
 [InlineData(9)]
 public void Test2(int value) {
 Assert.Equal("public", _vc.GetPublicStatus(value));
 }
 }
}

Local unit tests confirm that our code passes. I then checked this
code into a GitHub repository so that my deployment pipeline could
“see” it.

Figure 9-16. Running local unit tests

Note that although Concourse can use Windows-based worker
nodes to execute tasks, this recipe uses a Linux-based runtime. The
simplest way to get Concourse up and running on any OS is via
Docker Compose. After Concourse is up and running, you can log
in to the fly CLI to create and manage pipelines; see Figure 9-17.

82 | Chapter 9: Applying Proven Modernization Recipes

http://bit.ly/2OPLg9b

Figure 9-17. Concourse, up and running

Concourse pipelines are defined in a YML format. We define a Git‐
Hub repo and Pivotal Cloud Foundry endpoint as the two resources:

resources:
- name: seroter-source
 type: git
 source:
 uri: https://github.com/rseroter/xunit-tested-dotnetcore
 branch: master
- name: pcf-on-aws
 type: cf
 source:
 api: https://api.run.pivotal.io
 skip_cert_check: false
 username: [username]
 password: [password]
 organization: [org]
 space: development

The pipeline then has two jobs. The first executes unit tests. Notice
that it uses a Microsoft-provided Docker image to host the tests.
Next, it runs a dotnet test command to execute the xUnit tests:

jobs:
- name: aspnetcore-unit-tests
 plan:
 - get: seroter-source
 trigger: true
 - task: run-tests
 privileged: true

Put .NET Core Apps on Pipelines | 83

 config:
 platform: linux
 inputs:
 - name: seroter-source
 image_resource:
 type: docker-image
 source:
 repository: microsoft/aspnetcore-build
 run:
 path: sh
 args:
 - -exc
 - |
 cd ./seroter-source
 dotnet restore
 dotnet test

If that job passes, the second job kicks off. Note that there’s no data
passing directly between jobs. You can share files between tasks in a
job, but not between jobs. In a real-world scenario, you’d likely drop
the results of the first job into an artifact repository and then pull
from that repository in the next job. In this recipe, we simply grab
the source code again from the GitHub repo (if the tests pass) and
push it to PCF:

jobs:
- name: aspnetcore-unit-tests
 [..]
- name: deploy-to-prod
 plan:
 - get: seroter-source
 trigger: true
 passed: [aspnetcore-unit-tests]
 - put: pcf-on-aws
 params:
 manifest: seroter-source/manifest.yml

Deploying a pipeline is easy. From the fly CLI, you provide the name
of your pipeline and point to the pipeline.yml file.

fly -t rs set-pipeline -p book-pipeline -c pipeline.yml

The result? A green pipeline, as shown in Figure 9-18, if all the unit
tests pass.

84 | Chapter 9: Applying Proven Modernization Recipes

Figure 9-18. Success!

And we get a running app on PCF (see Figure 9-19). From this point
on, any check-in to my code on GitHub triggers the pipeline and
pushes my code to Cloud Foundry. What a straightforward way to
automate the path to production!

Figure 9-19. The app up and running on PCF

Put .NET Core Apps on Pipelines | 85

Summary
All of these recipes can help you quickly modernize your .NET apps
and remove constraints that prevent those apps from being cloud-
native. Instead of simply moving apps unchanged from one host to
the next, consider investing in modernization.

86 | Chapter 9: Applying Proven Modernization Recipes

CHAPTER 10

Your Call to Action

When I finish watching a fixer-upper show on HGTV, I go on with
my day and pay no heed to what I observed. I don’t want you to do
that after you read this book! No, you have some clear next steps to
ensure that you regain control of your .NET portfolio and start real‐
izing new value from your existing assets. I’d like you to do four
things.

Step 1: Assess Your Portfolio
First, you need to get a handle on what’s in front of you. Scour your
landscape to get a sense of which .NET project types you have. Go
back to Chapter 2 and list your software for each category.

Consider a few vectors when plotting your portfolio. For example,
you might want to create a chart that grades technical debt on the y-
axis, and business value on the x-axis (see Figure 10-1). The circles
that you plot represent the .NET apps, and the circle size corre‐
sponds to how well that app represents what’s in your overall portfo‐
lio. That last factor matters because you want to tackle
modernization of apps that generate patterns you can use elsewhere.

87

Figure 10-1. Plotting your application portfolio

In Figure 10-1, circle A is a poor candidate for modernization. It has
low business value and a high degree of technical debt, and upgrad‐
ing it doesn’t help us elsewhere in the portfolio. Contrast that with
circle B, which still has some serious technical debt to overcome, but
it has strong business value and would have modernization patterns
you can apply elsewhere.

After creating your inventory of .NET apps and doing some light
scoring, it’s time to choose a handful for initial modernization. You
want to choose among the options that are useful to your business,
and can generate repeatable modernization patterns.

Step 2: Decide on a Modernization Approach
There’s no one-size-fits-all approach to modernization. Some .NET
software doesn’t need to be fully cloud native. Some light refactoring
might be all you need. Other applications require a more compre‐
hensive rewrite to introduce the necessary cloud-native attributes
you crave. And some software will simply be retired because it’s no
longer adding any value.

Figures 10-2 and 10-3 show some useful visual models for thinking
about what to do with your existing .NET software. Figure 10-2 con‐
siders what to do based on application priority—that is, whether you
plan to invest, maintain, or divest the .NET app.

88 | Chapter 10: Your Call to Action

Figure 10-2. A modernization model based on app priority (created by
William Martin at Pivotal)

You can see there that for apps you’re investing in or maintaining,
there are a handful of strategies and target runtimes. Figure 10-3
puts the focus on the type of .NET software and how that influences
what you do with it. You can see that for web apps and .NET console
apps, there’s a clear path. The only ones you’re currently “stuck” with
are desktop apps.

Step 2: Decide on a Modernization Approach | 89

Figure 10-3. A modernization model based on software type (created
by Shawn Neal and Shanfan Huang at Pivotal)

As you plan your modernization, you have questions to ask yourself.
Are you creating a microservices architecture? How exactly are you
going to decompose existing applications? What new components
are you going to introduce? What’s the ideal place for this modern‐
ized .NET software to run? Hopefully this book has helped you
think through those answers!

Step 3: Modernize Your Initial Set of Apps
It’s critical that you start this process small. Don’t set up a plan to
modernize 300 apps this year. There’s going to be a learning process.

90 | Chapter 10: Your Call to Action

Based on a value-stream assessment or some other technique,
choose a mix of apps (see step 1) that add business value and offer
the most learning opportunities. Don’t forget to mix in one or two
apps that offer some “quick win” success to motivate your team!

Once you choose your initial set of target apps, assemble a team that
will stick together to modernize them. First, try to collect some
upfront metrics that measure your current state. Think of things like
how long it takes to update the app today, its uptime numbers, and
load limits. This will come in handy later. Next, focus on defining
useful standards for developer tooling and project setup, and imme‐
diately get those applications into CI/CD pipelines. As each week
goes by, do a retrospective on what you’ve learned and any surprises
you’ve encountered.

Step 4: Record Your Patterns and Spread the
News
If you’re part of this modernization effort, it’s critical to document
your journey. Your goal is to make this a repeatable process, and one
that many can perform. Write down the core patterns that you use,
and stash them on a wiki or some other sharable place. At Pivotal,
when we do application transformation projects with customers, we
create and leave behind a “cookbook” of all the recipes we created
together. This means that future teams can follow those recipes, and
easily add new ones.

A Final Note
I hope you found this book helpful. Like a home improvement
project, your .NET modernization is a journey. It requires upfront
assessment of the task at hand and careful consideration for what
work you want to take on. At the same time, both home improve‐
ment and .NET modernization projects offer unique opportunities
to make meaningful changes. Don’t miss the chance to add new
capabilities while making your software more sustainable and per‐
formant.

You have an important job to do, and I know that you’ll tackle it
with gusto. Best of luck!

Step 4: Record Your Patterns and Spread the News | 91

About the Author
Richard Seroter is a senior director of product for Pivotal. He’s also
an 11-time Microsoft MVP for cloud/integration, an instructor for
Pluralsight, the lead InfoQ.com editor for cloud computing, and
author of multiple books on application integration strategies. As a
product director, he gets to lead product, partner, and customer
marketing and help shape Pivotal’s position and messaging. He
maintains a regularly updated blog at seroter.wordpress.com on top‐
ics of architecture and solution design, and you can also find him on
Twitter as @rseroter.

https://seroter.wordpress.com/
https://twitter.com/rseroter

	Cover
	Copyright
	Table of Contents
	Preface: The .NET Renaissance
	Acknowledgments

	Chapter 1. Why App Modernization Matters
	What Is Modernization?
	Why Modernize?
	What We Cover in This Book

	Chapter 2. What You Have Running Right Now
	You Have Many Different .NET Project Types
	What That Means
	Why You Want to Change

	You Have Lots of Windows-Specific Hooks in Your .NET Software
	What That Means
	Why You Want to Change

	You Have Stale Environments That Aren’t Regularly Updated
	What That Means
	Why You Want to Change

	You Have Monolithic Architectures and Complex Deployments
	What That Means
	Why You Want to Change

	You Have Apps Without Deployment Pipelines
	What That Means
	Why You Want to Change

	You Have Apps That Aren’t Ready for Higher-Order Cloud Runtimes
	What That Means
	Why You Want to Change

	Summary

	Chapter 3. The .NET Software You’re Asked to Create
	Behind-the-Firewall Enterprise Apps
	Real-Time Processing Systems
	Public-Facing Web Applications
	Mobile-Friendly Solutions
	APIs for Internal Apps and Partners
	Summary

	Chapter 4. What Does Cloud Native Look Like?
	Defining Cloud Native
	Why Cloud-Native Matters
	Customers Expect It

	Characteristics of Cloud-Native Apps
	They Meet the 15-factor Criteria

	Thinking Beyond “Apps” for Cloud-Native Software
	Measuring Your Progress Toward Becoming Cloud Native
	Summary

	Chapter 5. Choosing Between .NET Framework and .NET Core
	A Bit of History Regarding the .NET Framework
	The Introduction of .NET Core
	Deciding Which to Use When Modernizing .NET Apps
	Summary

	Chapter 6. The New .NET Antipatterns
	.NET Application Architecture Antipatterns
	In-Process State

	Configuration and Instrumentation Antipatterns
	Using web.config for Environment-Specific Values

	Application Dependencies and Deployment Anti-Patterns
	Global Assembly Cache Dependencies

	Summary

	Chapter 7. New Components for Your Modernized .NET Applications
	Open Source Data and Messaging Software
	Cloud-Based Data and Messaging Services
	Modern .NET Packages
	xUnit
	Steeltoe

	Continuous Integration and Continuous Delivery Tools
	Summary

	Chapter 8. Where to Run Your Modern .NET Applications
	Choose Your Infrastructure Location
	Choose Your Infrastructure Abstraction
	Hardware Abstraction
	Infrastructure as a Service Abstraction
	Container as a Service Abstraction
	Platform as a Service Abstraction
	Function as a Service Abstraction

	Summary

	Chapter 9. Applying Proven Modernization Recipes
	Use Event Storming to Decompose Your Monolith
	Externalize Your Configuration
	Introduce a Remote Session Store
	Move to Token-Based Security Schemes
	Put .NET Core Apps on Pipelines
	Summary

	Chapter 10. Your Call to Action
	Step 1: Assess Your Portfolio
	Step 2: Decide on a Modernization Approach
	Step 3: Modernize Your Initial Set of Apps
	Step 4: Record Your Patterns and Spread the News
	A Final Note

	About the Author

