
Architectural Blueprints:
Moving your content
management into the cloud

4. Magnolia with RabbitMQ activation

Architectural Blueprint 4: Magnolia with RabbitMQ activation 3
 Content synchronization and RabbitMQ activation 4
 Content synchronization coordination 5
 Handling out-of-sync public instances 5
 Recommendations 6
 AWS services used 6
 Autoscaling recipe with RabbitMQ activation 6
 Tooling 7

Contact us 8

Table of contents

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

2

Architectural Blueprint 4: Magnolia with
RabbitMQ activation

Enterprises today increasingly want to tap the benefits of moving
their digital ecosystems to the cloud. A key piece in that ecosystem
is their content management system (CMS).

Using Amazon Web Services (AWS) and
Magnolia CMS as an example, we offer four
architectural blueprints for optimizing the
deployment to ensure seamless integration.
 We discuss the advantages and disadvantages
of each approach and offer recommendations
to achieve autoscaling for high-performance
and high-traffic scenarios.

The four blueprints cover:

1. Standard CMS deployment
2. CMS deployment with content source target
3. CMS deployment with JCR clustering
4. CMS deployment with RabbitMQ

This white paper, the final of the four blueprints,
looks at the general principles of deploying a
CMS with RabbitMQ. While using AWS and

Magnolia as a case study, the lessons learnt
can be applied to other enterprise-level CMS
deployments in the cloud.

You may have noticed that there are certain
common problems in the architectural
blueprints we have presented: content
synchronization on a new Magnolia instance
and registering a subscription for a new
Magnolia public instance, for example.

Publishing content in Magnolia uses
“transactional activation”. The Magnolia author
instance ensures that all subscribed public
instances receive and save the published content.
If one of the public subscribers fails to publish
the content, the content publication is rolled
back across all public subscribers.

ELASTIC LOAD BALANCER

RABBITMQ

(standby
activation queue)

(standby
activation queue)

MAGNOLIA AUTHOR

Private subnet

EC2 instance RDS instance

Public subnet

EC2 instance

PUBLIC

EC2 instance

PUBLIC

JCR

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

3

Transactional activation guarantees that
all public subscribers are kept in sync.
Transactional activation comes at a cost:
the time to publish content is proportional
to the number of public subscribers; with
more public instances, more time will be
taken to ensure a successful publication.

Publishing content with RabbitMQ activation is
an alternative to transactional activation. It uses
RabbitMQ, an open-source messaging broker, to
deliver activation messages from the Magnolia
author to Magnolia public subscribers. RabbitMQ
allows a looser coupling between the Magnolia
author and public instances: publication with
RabbitMQ activation will not be transactional, but
the time to publish content will depend on how
many public instances are running. With
RabbitMQ activation, public instances could get
out of sync, but also makes it easier to start and
stop Magnolia public instances.

RabbitMQ activation allows many Magnolia
public instances to be connected to a single
Magnolia author without increasing the time to
publish content.

There are other benefits to RabbitMQ. Since the
Magnolia author and public instances are
decoupled, there is no need for a publication
freeze to prevent publications while a new
Magnolia public is starting. There is no need
to register the new public instance with
the Magnolia author either; the public instance
is registered with RabbitMQ, not the
Magnolia author.

To provide a robust, scalable delivery mechanism,
RabbitMQ can be set up to provide high
availability queues with federation and clustering

to ensure that the Magnolia author can always
send activation messages for distribution to
Magnolia public instances.

Content synchronization and RabbitMQ
activation
In other blueprints, we recommended a hybrid
approach to content synchronization: use the
Magnolia Backup module to restore most of your
JCR content, followed up by the Magnolia
Synchronization module to synchronize any
content changed since the last backup.

You can still use the Synchronization module
with RabbitMQ activation, but RabbitMQ
activation gives you another way to update
recently changed content.

RabbitMQ is a message broker, distributing
messages to clients through queues. Messages
stay in RabbitMQ queues until they are delivered
to clients. RabbitMQ queues that don’t have a
client will save messages until they are delivered
to a client.

RabbitMQ activation uses RabbitMQ to deliver
activation messages from a Magnolia author to
Magnolia public instances. Each Magnolia public
instance is attached to a queue, waiting for
activation messages. With RabbitMQ, you can
create “standby” activation queues without a
Magnolia public instance client. Activation
messages will be saved in the standby queue
until a public instance claims the standby
queue and RabbitMQ will deliver the activation
messages to the public instance.

MAGNOLIA AUTHOR

MAGNOLIA PUBLIC 1

EXCHANGE FANOUT

queue_pub_1

queue_pub_2

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

4

Activation messages are relatively small and
RabbitMQ is capable of managing many queues
and messages; standby activation queues could
store many hundreds or thousands of messages
in a RabbitMQ broker using minimal system
resources.

Content synchronization coordination
There is some practical limit to how many
messages can be stored in RabbitMQ queues.
At some point, the standby activation queues
must be flushed.

Standby activation queues can be used instead
of the Magnolia Synchronization module. You will
need to coordinate the backup with the standby
activation queues.

When a backup is made, the standby activation
queues should be flushed, since any publications
waiting in the standby queues will be contained
in the backup.

There are two ways you can make a scheduled
backup of a Magnolia instance:

• By setting up a scheduled job within Magnolia
(note that Magnolia must be running to make
the backup)

• By setting an AWS Lambda function to run
at a scheduled time (note that Magnolia doesn’t
have to be running when the backup is made)

Setting up a scheduled job in Magnolia to launch
a backup is easy; see the Magnolia Scheduler
module:
https://documentation.magnolia-cms.com/
display/DOCS56/Scheduler+module

A scheduled AWS Lambda function could launch
a Magnolia backup via the Magnolia REST API
and flush the RabbitMQ standby activation
queues. The coordination between backup and
flushing queues doesn’t even have to be precise:
with RabbitMQ activation, a Magnolia public
instance will discard any activation messages it
has already received.

Handling out-of-sync public instances
When using transactional activation, publishing
content can fail, but Magnolia guarantees all the
public instances will be in sync. Transactional
activation can fail for many different reasons:
a subscribed Magnolia instance might not be
actually running or is unable to process the
publication within a set time; the Magnolia
instance’s JCR repository is corrupted; there is a
time difference between the Magnolia author
and Magnolia public instance; and many other
reasons. Transactional activation prevents the
public instances from getting out sync, but may
also prevent any publications until a failing
Magnolia public instance is repaired or taken out
of service and its subscription is deactivated.
Unfortunately, transactional activation doesn’t
provide a convenient hook for AWS services for
detecting ailing Magnolia subscribers and
correcting them.

RabbitMQ activation provides a feedback
channel for activations: Magnolia subscribers
can report whether a publication succeeded or
failed on RabbitMQ acknowledgement. That
acknowledgement can be monitored by the
RabbitMQ monitoring app in the Magnolia author.
The monitoring app shows what activations
succeeded and failed for each Magnolia public
instance, how long an activation message stayed
in queue and how long it took for the public
instance took to process it.

The RabbitMQ monitoring app can help you see
whether Magnolia instances are in sync or not,
but the underlying notification mechanism—the
activation acknowledgement queue—can be an
integration hook for managing Magnolia public
instances with AWS services.

Here’s how: activation notifications from
RabbitMQ activations are also stored with
Magnolia in a separate JCR workspace.
Those notifications note whether an activation
succeeded or failed, how long it waited for
delivery in RabbitMQ and how long it took the
Magnolia public instance to process the
activation once RabbitMQ delivered it. All this
information could be used to identify out-of-sync
or ailing Magnolia public instances.

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

5

There are at least two ways you could tie in
activation acknowledgements to AWS services:

Within Magnolia: use the Magnolia Observation
module to watch the RabbitMQ activation
notification workspace.

When the workspace is updated with notification
that shows a problem with a Magnolia public
instance (a failed activation or a slow activation,
for example), post a notification on an AWS SNS
topic noting a problem with the Magnolia
instance. AWS Lambda functions could then
do further notifications to notify Magnolia
sysadmins or terminate the Magnolia instance
and replace it.

Outside Magnolia: build an external client to
monitor the activation acknowledgement queue
and post a notification on an AWS SNS topic
noting a problem with the Magnolia instance,
letting other AWS services (like a Lambda
function) kick in and handle the problem.

Recommendations
Recommended when running five or more
Magnolia public subscribers
RabbitMQ activation allows publications to many
public instances.

Recommended for high frequency of publication
Publishing is an expensive operation for the
Magnolia author. Using RabbitMQ greatly
reduces the load on the Magnolia author in
publishing to many public instances.

Recommended for large numbers of Magnolia
Admin Central users
Magnolia can support up to 30 to 50
simultaneous users of Admin Central. RabbitMQ
reduces the performance load when those
authors publish content.

AWS services used
• AWS Cloudwatch events (for autoscaling

notifications)
• AWS Lambda functions (for autoscaling

coordination)
• AWS SNS notifications (for invoking Lambda

functions)

• AWS SSM agent (for executing commands on
remote EC2 instances and restoring backups)

Autoscaling recipe with RabbitMQ activation
In this recipe, the logic of selection of an
available standby activation queue resides in a
Lambda function.

Step 1. AWS Lambda function sets up the new
public instance:

• Select an available standby activation queue.
• Launch Magnolia.
• Wait for Magnolia to become available;

configure the instance’s RabbitMQ client
configuration to use the selected standby
activation queue.

Step 2. Once the new Magnolia public instance is
up and running, add it to the load balancer.

Variation: autoscaling recipe without
AWS Lambda
The logic of selecting an available standby
activation queue could be included in a Magnolia
module, so no Lambda function would be
needed.

The module could query RabbitMQ, find an
unused standby activation queue, and update its
RabbitMQ client configuration directly.

This variation avoids waiting for Magnolia to start
up before changing the RabbitMQ configuration.

Step 1. On Magnolia starting up:

• Select an available standby activation queue
and update its RabbitMQ client configuration
directly.

Step 2. In a Lambda function handling the
autoscaling notification:

• Add the new Magnolia public instance to the
load balancer.

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

6

Tooling
The following Magnolia features and extensions
will help in building this blueprint:

• Magnolia RabbitMQ modules: publish content
with RabbitMQ

• Magnolia Property REST API: for adjusting the
RabbitMQ client configuration

• Magnolia Node REST API: for adjusting the
RabbitMQ client configuration

• Magnolia Backup module: back up and restore
a JCR repository

• Magnolia Synchronization module:
synchronize content between a Magnolia author
and public instance

• Magnolia Observation module: get
notifications when the contents of a JCR
workspace is changed

• Magnolia Services auto-license module:
installs your Magnolia license and avoids the
license prompt on first start-up

• Magnolia Scheduler module: execute
commands at specified times

More about Magnolia modules:
https://documentation.magnolia-cms.com/
display/DOCS56/Modules

More about Magnolia Extensions:
https://wiki.magnolia-cms.com/display/EX/
Magnolia+Extensions

Architectural Blueprint 4:
Magnolia with RabbitMQ activation

7

https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://documentation.magnolia-cms.com/display/DOCS56/Modules
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions
https://wiki.magnolia-cms.com/display/EX/Magnolia+Extensions

Switzerland (HQ)
Magnolia International Ltd.
Oslo-Strasse 2
4142 Münchenstein (Basel)
Switzerland

+41 61 228 90 00
info@magnolia-cms.com

North America
Magnolia Americas, Inc.
168 SE 1st Street
Suite 1007
Miami, FL 33131
United States of America

(305) 267-3033
info-us@magnolia-cms.com

Spain
Magnolia España Software and
Computer Applications S.L.
Paseo de la Castellana 153, Bajo
28046 Madrid
España

+34 662 63 43 36
info-es@magnolia-cms.com

United Kingdom
Magnolia Software UK Ltd.
9 Devonshire Square, 3rd Floor
London EC2M 4YF
United Kingdom

+44 7554 041 782

Czech Republic
Magnolia Software & Services CZ s.r.o.
Chobot 1578
76701 Kromeriz
Česká Republika

+420 571 118 715
info-cz@magnolia-cms.com

Singapore
Magnolia SIngapore
7 Temasek Boulevard
Suntec Tower One, Level 44-01
038987 Singapore

+65 64 30 6778

Vietnam
Magnolia
Etown 1 Building
Unit 7.10
364 Cong Hoa Street
Tan Binh District
Ho Chi Minh City, Vietnam

+84 28 3810 6465
vietnam@magnolia-cms.com

Magnolia International Ltd.

Copyright Magnolia International Ltd. © 2018

Magnolia is a registered trademark of Magnolia International Ltd. All trademarks are the property of their respective owners. This work is licensed under a Creative Commons

Attribution-NonCommercial-NoDerivs 3.0 Unported License. Published 2017-09-25

Contact us

mailto:info%40magnolia-cms.com?subject=
mailto:info-us%40magnolia-cms.com?subject=
mailto:info-es%40magnolia-cms.com?subject=
mailto:info-cz%40magnolia-cms.com?subject=
mailto:vietnam%40magnolia-cms.com?subject=

