
WHITE PAPER

Pivotal Practices: 
Application Transformation
By Matt Russell 



WHITE PAPER 2

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Why You Need Application Transformation ...........................................................................................3

Pivotal’s App Transformation Approach ...................................................................................................4

Tenets of App Transformation ...............................................................................................................................................4

Phases of App Transformation ..............................................................................................................................................4

Prerequisites for Your App Transformation Journey .....................................................................6

Organizational Commitment ..................................................................................................................................................6

A List of Viable Application Candidates ............................................................................................................................6

An App Transformation Team ................................................................................................................................................7

Production-Grade Platform Infrastructure .........................................................................................................................7

An Automated Continuous Integration (CI) Pipeline .....................................................................................................7

How to Transform Your App Portfolio ..........................................................................................................8

Select Apps for Replatforming ..............................................................................................................................................8

TIME ...........................................................................................................................................................................................8

15-Factor SNAP Analysis ........................................................................................................................................................9

Replatform Applications ..........................................................................................................................................................9

Work Tracks ..............................................................................................................................................................................9

Automate Testing ................................................................................................................................................................... 10

Continuous Integration ......................................................................................................................................................... 10

Modernize Applications......................................................................................................................................................... 10

Decompose Monoliths into Microservices ......................................................................................................................... 11

Domain-Driven Design .......................................................................................................................................................... 11

Slicing ...................................................................................................................................................................................... 12

Decomposition Steps ............................................................................................................................................................ 12

How to Know if You’re Succeeding .............................................................................................................. 13

Table of Contents

https://pivotal.io


WHITE PAPER 3

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Why You Need Application Transformation
Most of the world’s developers work on legacy applications: products and services that have been built, 
maintained, and updated over long periods of time. Pivotal customers who want to move to the cloud 
often have a complex legacy app portfolio that is tightly coupled and sparsely documented.

Large organizations also develop layers of manual processes designed to minimize risk and ensure 
compliance. As a result, software releases are often infrequent, high-ceremony events that require 
heroism and brute force.

Your legacy portfolio can be gradually transformed to cloud-native in order to incrementally reduce time, 
cost, and operational inefficiencies while maintaining security, resilience, and compliance. Updating and 
automating processes, in parallel with transforming apps, will reduce the pain and risk of continuously 
releasing changes while still meeting enterprise-grade requirements.

https://pivotal.io


WHITE PAPER 4

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Pivotal’s App Transformation Approach
App transformation is challenging because it requires app teams to develop cloud technical skills 
in parallel with making major changes to core software development lifecycle (SDLC) processes. 
Organizations must dedicate their most talented people to the transformation effort, while ensuring  
that the entire legacy application portfolio continues to operate.

Pivotal has helped dozens of organizations on their app transformation journey. Our approach defines 
incremental steps that gradually increase the cloud maturity of your app portfolio, the automation in your 
SDLC, and the knowledge of your team.

Objectives and key results (OKR) measuring cloud maturity, automation, and skill building are defined and 
tracked for every step. Objectives define where you want to go; key results are metrics to measure the 
progress you are making in that direction.

Tenets of App Transformation
Pivotal has developed four key tenets of app transformation:

1. Start small. Even if your portfolio contains thousands of apps, start with a single business unit and  
a handful of apps. 

2. Learn by doing. Build skills by transforming the first apps and developing a cookbook of 
transformation patterns that are then used to transform more apps. 

3. Break big things into small things. Incrementally transform larger and more complex apps by 
breaking them down into smaller parts.

4. Automate everything. Use test-driven development, continuous integration, and deployment.

Phases of App Transformation
Pivotal defines a cloud-native application as one that runs on a Platform-as-a-Service—such as Pivotal 
Cloud Foundry (PCF)—and embraces horizontal, elastic scaling. Pivotal customers have moved thousands 
of applications to PCF over the last few years, from modern Java Spring and .NET Core to legacy systems 
that span hundreds of containers.

Pivotal defines three phases of app transformation to cloud-native: replatforming, modernization,  
and organization transformation. The cloud maturity of your app portfolio, as measured using  
15 technical factors, gradually increases during each phase.

https://pivotal.io
https://en.wikipedia.org/wiki/OKR
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/


WHITE PAPER 5

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Suitable Apps Moved to
PCF with Minimal Code

Change; Better Ops Thanks
to Platform Automation

Your Existing Apps Running
on Current-Era Stacks

Supported by Time-Tested
People and Process

Replatforming Modernization Org Transformation

Legacy Apps Refactored
Using 12-Factor Principles

and Modern Software
Process (TDD, CI/CD),

Optimized for PCF

Cross-Functional Teams
Delivering Continuous

Software Updates Into PCF
End-to-End Through
Modern Principles

Runs on
Existing Systems

Runs on
Pivotal Cloud Foundry

Runs WELL on
Pivotal Cloud Foundry

Runs GREAT on
Pivotal Cloud Foundry

Replatforming involves moving a small set of existing applications to the new platform. The effort required 
to migrate these applications should be low to moderate, and the replatformed apps should perform as 
well, or better, than before. However, replatformed apps often do not yet comply with all 15 factors.

During modernization, the level of cloud maturity of replatformed apps increases, while larger and more 
complex apps are also transformed. More complex nonfunctional requirements—like performance, 
security, and compliance—will be met during modernization.

Organization transformation reconfigures your organization by forming small, balanced teams that  
deliver software products from idea to production. Organization transformation is beyond the scope  
of this document, but is also an incremental process that starts with a single team.

https://pivotal.io
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/


WHITE PAPER 6

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Prerequisites for Your App  
Transformation Journey
Pivotal’s experience has shown that putting the following team and technology prerequisites in place 
greatly increases your chances of successfully transforming your app portfolio.

Commitment
A motivated business unit with leadership 
committed to Cloud and a willingness to 
invest time and dollars in transformation

A List of Viable Candidates
Find apps built less than seven years ago 
using tech supported by a PCF buildpack 
(e.g., JEE) that have business relevance 
and are in active use

Good People
A small team of people that understands 
the application domain(s), and which 
works on the initiative in a dedicated way

Your PCF
Product Team

Motivated
BU

An Empowered PCF Ops
Team with Ties to BU’s

A Rough Idea of
Migration Candidates

App Developers with
Domain Knowledge

Tolerate

Te
ch

ni
ca

l V
al

ue

Business ValueWorse Better

W
o

rs
e

B
et

te
r

Eliminate

Invest

Migrate

Organizational Commitment
The app transformation journey often begins locally, within a single business unit, before spreading across 
an organization. The leadership of this business unit must be motivated to move to the cloud and willing to 
invest time and money into the transformation.

An app transformation sponsor is usually a CIO or senior executive who controls a relevant budget and is 
responsible for transformation within the target business unit. The sponsor must have the motivation and 
the political capital to unblock legacy policy, processes, and other obstacles standing in the way of the 
app transformation team.

A List of Viable Application Candidates
You need a basic understanding of the cloud suitability of the target business unit’s application portfolio in 
order to choose the first set of applications to migrate to the platform. These apps will be selected based 
on a combination of technical, business, and economic factors.

https://pivotal.io


WHITE PAPER 7

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

An App Transformation Team
You need a small, dedicated team with a product owner and developers familiar with the applications to 
be transformed. Ideally, the team should also include developers who have experience with the target 
platform and cloud-native architectures. The team must be empowered to quickly make decisions without 
lengthy ticketing processes and signoffs.

Product Owner
Represent business interests 
through backlog prioritization 
and internal coordination to 
unblock encountered issues 

by the team to ensure 
maximum project velocity.

Project Anchor
Hands-on technical leaders 

who pair with product owners 
on backlog concerns, guide 
technical practices, oversee 

quality and do technical work.

Developer
Skilled architect/developers 

who know the existing app and 
underpinning stacks being 

worked on as they grow 
Cloud-Native skills and 

experience by doing the work.

Recommended roles within small cross-functional teams

Production-Grade Platform Infrastructure
The platform should be operated by a balanced, dedicated platform product team. App transformation 
projects that start soon after platform installation require frequent interaction with the platform team because 
platform features (buildpacks, stem cells, etc.) will need to be tweaked to fit application requirements.

An Automated Continuous Integration (CI) Pipeline
At a minimum, a basic CI pipeline should be available. If the platform is mature, existing CI pipelines 
and features provided by the platform team can be used. These pipelines may be extended by the app 
transformation team.

https://pivotal.io


WHITE PAPER 8

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

How to Transform Your App Portfolio
Pivotal measures the cloud maturity of an app using 15 technical factors. In 2012, a team at Heroku defined 
the 12-factor app, a manifesto for building applications for cloud platforms. Pivotal has updated the 12 factors 
to 15 factors, which are prioritized and adapted to use the latest technologies and best practices.

The new factors added by Pivotal include API-first development, monitoring, authentication, and 
authorization. Pivotal also provides recommendations on how to implement particular factors using  
PCF (e.g., managing dependencies using buildpacks).

Usually Easy
V.  Build, Release, Run
XI.  Logs
X.  Environmental Parity
VII.  Port Binding

Moderate E�ort
I.  One Codebase, One App
II.  Dependency Mgmt.
IX.  Disposability
XII.  Administrative Process
VIII.  Concurrency
XIII.  API First*
XIV.  Telemetry*

More E�ort
III.  Configuration
IV.  Backing Services
VI.  Process
XV.  Security*

 Effort required to implement Pivotal’s 15 Factors

More effort is required to comply with some factors than others. Factors requiring easy to moderate effort 
are tackled earlier in the app transformation journey.

Select Apps for Replatforming
Pivotal recommends selecting a set of 5–10 apps to be replatformed based on a combination of technical, 
business, and economic factors. The vast majority of applications built within the last seven years can be 
replatformed with minimal technical effort.

The chosen apps should also be representative of the full portfolio. Companies in regulated industries 
such as banking and healthcare should ensure that these apps can pressure test as many policy, security, 
and regulation constraints as possible.

TIME
When the app portfolio is large, a TIME (Tolerate, Invest, Migrate, Eliminate) analysis is often used to 
prioritize a batch of apps for replatforming. A TIME quadrant map shows the business value of each app 
versus the technical effort and risks required to replatform it. Ideally, the selected apps should have high 
business value and require low-to-medium technical effort to replatform. TIME will narrow the scope to 
maximum 10–50 apps that will then be scored using SNAP analysis.

https://pivotal.io
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://12factor.net/
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://www.gartner.com/doc/1115314?ref=unauthreader
https://www.gartner.com/doc/1115314?ref=unauthreader


WHITE PAPER 9

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Tolerate

Te
ch

ni
ca

l V
al

ue

Business ValueWorse Better

W
o

rs
e

B
et

te
r

Eliminate

Invest

Migrate

Focus here and start with the most 
impactful custom apps built 0 to 7 

years ago with supported tech

Realize Immediate ROI Through:
Auto-Scaling

Automated Health Management
Zero Downtime Updates

Reduce Proprietary License Spend

 

TIME Map

15-Factor SNAP Analysis
Snap Not Analysis Paralysis (SNAP) is used to score the technical cloud suitability of application replatforming 
candidates. A simple SNAP is a 15–30-min exercise covering app usage, data architecture, app architecture, 
and configuration. SNAP results in a replatforming score for each candidate app capturing whether a low, 
medium, or high level of effort is needed to move it to the cloud. TIME and SNAP results are combined to 
choose the first 5–10 apps to be replatformed.

Replatform Applications
Make the minimal testable changes to each application required to run it on PCF.

The first phase of app transformation moves the set of applications chosen above to PCF. A replatformed 
app should work identically, or better, on PCF than on the existing platform, but often conformance with 
only four to six factors from the full 15 factors is necessary to move the app. In parallel, make any changes 
required to deploy using the automated CI pipeline.

Work Tracks
There are three parallel work tracks during replatforming. OKR should be defined for each work track.

App replatforming: The application transformation team will work in week-long sprints. A first app can 
generally be replatformed within hours or days. OKR for this work track typically measure the number of 
apps or user stories that have been replatformed.

Process transformation: Work through the process and policy issues required to get the replatformed 
apps to production. This might include release management, environmental issues (e.g., network, firewall, 
DNS), security (e.g., OSS, credential management, code scans), application (e.g., logging, health monitoring, 
configuration management), risk (e.g., standards adherence, regulation), and business issues (e.g., business 
validation, training readiness). This analysis may result in a new CI pipeline or usage of PCF features like 
logging and monitoring. OKR might include CI/CD pipeline improvements to increase delivery speed or 
reduce time to production.

https://pivotal.io
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/


WHITE PAPER 10

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

Pattern cookbook: Popular technologies like Java and .NET use fairly standard architectures, and employ 
common messaging patterns. As a result, the technical challenges you solve (e.g., how to modify JBoss 
code to run on PCF) can be documented in a set of patterns that can be reused broadly across the 
enterprise, helping to accelerate and de-risk future app transformation efforts. Once 10–20 apps have 
been replatformed, the patterns identified are usually sufficient to transform thousands more apps. OKR 
should cover documentation of these patterns.

Automate Testing
Many app transformation teams fall victim to a centralized QA organization that cannot accommodate a 
faster rate of change. The solution is to automate unit, integration, acceptance, and smoke tests in order 
to minimize manual testing.

There may be little to no automated test coverage for your existing application portfolio. All new code 
written should include unit and integration tests. All existing code ported to PCF should include smoke 
tests (including smoke tests for backing services) and potentially acceptance tests.

Where possible, integrate testing into the CI pipeline so that it becomes a standard part of release 
management. Push replatformed applications to production and start to transition the central QA role to 
a more exploratory, functional testing role. Document your new testing practices. They should become 
standard practice throughout your organization as the app transformation effort grows in scope.

Continuous Integration
Many large organizations have release processes that take weeks or months and have often become 
complex and opaque over time. Draw a value stream map of the end-to-end path to production (for the 
replatformed apps only) in order to identify opportunities to reduce waste through automation. We’ve 
seen cases where an eight-month release process was initially reduced to a few weeks—and eventually  
to days—using value stream maps.

A full tool chain must be available in order to push to production. This may be an existing tool chain 
provided by the platform team, a new tool chain selected by the app transformation team, or some 
combination of the two.

Modernize Applications
Make testable changes to applications to make them “run well” on PCF, aiming for 15-factor compliance. 
Break monoliths down into microservices.

Modernized apps run on PCF with high to full 15-factor compliance, including metrics and monitoring, 
backing services, automated failure testing, and elastic scale. Replatformed and new apps from the app 
portfolio can be modernized during this phase. Multiple business units may start transforming their own 
applications using the pattern cookbook developed during replatforming.

Some app teams maintain a single monolithic application rather than a suite of apps. Monoliths are broken 
down into microservices by moving successive slices of the app to the cloud. New microservices and 
replatformed slices will continue to work seamlessly with legacy code until the entire monolith has  
been moved.

https://pivotal.io
https://www.lucidchart.com/pages/value-stream-mapping
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://www.safaribooksonline.com/library/view/beyond-the-twelve-factor/9781492042631/
https://en.wikipedia.org/wiki/Vertical_slice


WHITE PAPER 11

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

It’s essential to have a mature PCF platform in place to support modernization. A balanced platform 
product team should manage the platform and provide increasingly sophisticated automation for testing, 
patching, upgrades, and release management.

Decompose Monoliths into Microservices
Monoliths are broken down into lightweight microservices that can scale horizontally on a cloud. Monoliths 
may span multiple subsystems and data sources and dozens of deployables across a network of servers 
and mainframe backends. Monoliths often also contain elements that cannot move to the cloud without  
a complete rewrite.

Decomposing an app that may contain millions of lines of code can seem intimidating. Pivotal uses  
a step-by-step process that starts by building a high-level domain model for the app and ends with 
actionable work in the form of user stories mapped to releases. Code is reused where possible,  
refactored when necessary, and rewritten only if it makes good business sense.

Domain-Driven Design
Pivotal recommends Domain-Driven Design (DDD) and Event Storming as practical approaches to defining 
the boundaries of new microservices. A domain is a sphere of knowledge or activity. Understanding the 
core business domain of a monolith means understanding the problem the app exists to solve.

A domain model captures a shared understanding of the business domain of the monolith and a shared 
vocabulary to describe it. Business and technical staff should collaborate to create the domain model. Any 
sizable enterprise application will have a core domain and several subdomains or supporting domains that 
interact with each other.

Aggregate

Aggregate

Domain
Event

Domain
Event

Domain
Event

Domain
Event

Domain
Event Domain

Event

Domain
Event

Domain
Event

Domain
Event

Domain
Event

Domain
Event

Domain
Event Domain

Event

Domain
Event

Vehicle

Bounded Context Policy

Command

Command

!

?

Slide Candidate

 An example domain model

The model describes domain events: things that happen in the business domain rather than in a technical 
system (e.g., a customer buys a ticket). Triggers, also known as commands, cause events. Aggregates 
accept commands and process events. To model a business process, events are arranged in a time 
sequence called an event flow.

https://pivotal.io
https://content.pivotal.io/slides/the-modern-family-modernizing-applications-to-pivotal-cloud-foundry-getting-out-of-the-big-ball-of-mud
https://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
https://leanpub.com/introducing_eventstorming
https://content.pivotal.io/blog/getting-started-with-domain-driven-design-top-3-concepts


WHITE PAPER 12

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

A bounded context describes a domain as a group of aggregates with an explicit interface. A complex system 
consists of several bounded contexts (e.g., in an ecommerce system, you might have order, delivery, and 
billing-bounded contexts). Bounded contexts or aggregates can often be separated into microservices.

Event storming is a conference room activity used to build a domain model with event flows, commands, 
aggregates, and bounded contexts.

Slicing
After building a domain model, the monolith is split into vertical slices that can be moved to the platform  
one by one. Slicing horizontally splits functionality into architectural layers (e.g., user interface, web  
server, data layer). A vertical slice touches every layer of the architecture but implements only a sliver  
of functionality.

For example, the vertical slice, “Allow a user to login with a password,” might add username and password 
fields to a user interface, implement server-side logic, and update the last login field on the database 
record. Slicing vertically is one of the toughest mind shifts to make for a team new to agile because it 
requires developers to interact with areas of the app with which they may be less familiar.

Vertical slices are identified by choosing short, domain event flows in the core domain and defining the 
vertical architectural components required to produce those events. Slice by slice, the app transformation 
team translates the domain model into a software architecture including microservices, APIs, message 
queues, etc., that will run on the platform. Finally, a set of user stories is defined and mapped to releases 
or MVP.

As vertical slices of the monolith are moved into PCF, the system will combine the new microservices, 
with appropriate traffic routed to them, and legacy code that is integrated using various bridge and 
queuing techniques.

Decomposition Steps
Here is the full sequence of steps Pivotal recommends to decompose a monolith:

1. Define Objectives and Key Results (OKR).

2. Event storm the app and identify bounded contexts. 

3. Pick several short domain event flows in the core domain. 

4. Use C4 diagrams to identify a vertical slice of components to produce events in the flow. 

5. Brainstorm a target architecture to implement the vertical slice. 

6. Perform SNAP analysis to score the effort needed to make the slice 15-factor compliant. 

7. Create a backlog of prioritize user stories tied back to OKR. 

8. Map user stories to MVP or releases.

https://pivotal.io
https://leanpub.com/introducing_eventstorming
https://www.pivotaltracker.com/blog/choosing-best-slice-for-your-story/
https://en.wikipedia.org/wiki/OKR
https://c4model.com/


WHITE PAPER 13

pivotal.io

PIVOTAL PRACTICES: APPLICATION TRANSFORMATION

How to Know if You’re Succeeding
Quantitative measurement is critical and we recommend defining—and continuously refining—OKR for 
each step that covers process, time, and cost improvements. However, there are some general signals 
that show that your app transformation effort is succeeding:

• More software releases this quarter than last quarter.

• Release management efficiency: Lower lead and process time, fewer steps and handoffs.

• Improved operational metrics for transitioned apps: MTTR, MTBD, support tickets, etc.

• Improved security: Faster patching, zero downtime upgrades, etc.

• Infrastructure usage: Higher density compute, auto-scaling and licensing reductions.

Pivotal helps organizations all over the world to build agile app transformation plans. However, we do 
not have all the answers; we learn as much from our customers as we teach them. The successful app 
transformation journeys of Pivotal customers such as Liberty Mutual have informed much of the above 
advice. If you have insights about app transformation you would like to share, please contact us at  
info@pivotal.io.

DISCLAIMER: THIS DOCUMENT IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY AND REPRESENTS PIVOTAL’S CURRENT 

OFFERINGS AS OF THE DATE OF ISSUE OF THIS DOCUMENT, WHICH ARE SUBJECT TO CHANGE WITHOUT NOTICE. CUSTOMERS 

ARE RESPONSIBLE FOR MAKING THEIR OWN INDEPENDENT ASSESSMENT OF THE INFORMATION IN THIS DOCUMENT AND ANY 

USE OF PIVOTAL’S PRODUCTS OR SERVICES, EACH OF WHICH IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER 

EXPRESS OR IMPLIED. THIS DOCUMENT DOES NOT CREATE ANY WARRANTIES, REPRESENTATIONS, CONTRACTUAL COMMITMENTS, 

CONDITIONS OR ASSURANCES FROM PIVOTAL, ITS AFFILIATES, SUPPLIERS OR LICENSORS. THE RESPONSIBILITIES AND LIABILITIES 

OF PIVOTAL TO ITS CUSTOMERS ARE CONTROLLED BY PIVOTAL AGREEMENTS, AND THIS DOCUMENT IS NOT PART OF, NOR DOES 

IT MODIFY, ANY AGREEMENT BETWEEN PIVOTAL AND ITS CUSTOMERS.

© Copyright 2018 Pivotal Software, Inc. All rights Reserved.
PVWP-App Transformation-1w2  /  JRCL0818

https://pivotal.io
https://www.youtube.com/watch?v=vabrFqYKNeI
mailto:info@pivotal.io

